HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadj0i Structured version   Visualization version   GIF version

Theorem nmopcoadj0i 32073
Description: An operator composed with its adjoint is zero iff the operator is zero. Theorem 3.11(vii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadj0i ((𝑇 ∘ (adj𝑇)) = 0hop𝑇 = 0hop )

Proof of Theorem nmopcoadj0i
StepHypRef Expression
1 nmopcoadj.1 . . . . 5 𝑇 ∈ BndLinOp
21nmopcoadj2i 32072 . . . 4 (normop‘(𝑇 ∘ (adj𝑇))) = ((normop𝑇)↑2)
32eqeq1i 2735 . . 3 ((normop‘(𝑇 ∘ (adj𝑇))) = 0 ↔ ((normop𝑇)↑2) = 0)
4 nmopre 31840 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
51, 4ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
65recni 11118 . . . 4 (normop𝑇) ∈ ℂ
76sqeq0i 14081 . . 3 (((normop𝑇)↑2) = 0 ↔ (normop𝑇) = 0)
83, 7bitri 275 . 2 ((normop‘(𝑇 ∘ (adj𝑇))) = 0 ↔ (normop𝑇) = 0)
9 bdopln 31831 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
101, 9ax-mp 5 . . . 4 𝑇 ∈ LinOp
11 adjbdln 32053 . . . . . 6 (𝑇 ∈ BndLinOp → (adj𝑇) ∈ BndLinOp)
121, 11ax-mp 5 . . . . 5 (adj𝑇) ∈ BndLinOp
13 bdopln 31831 . . . . 5 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ LinOp)
1412, 13ax-mp 5 . . . 4 (adj𝑇) ∈ LinOp
1510, 14lnopcoi 31973 . . 3 (𝑇 ∘ (adj𝑇)) ∈ LinOp
1615nmlnop0iHIL 31966 . 2 ((normop‘(𝑇 ∘ (adj𝑇))) = 0 ↔ (𝑇 ∘ (adj𝑇)) = 0hop )
1710nmlnop0iHIL 31966 . 2 ((normop𝑇) = 0 ↔ 𝑇 = 0hop )
188, 16, 173bitr3i 301 1 ((𝑇 ∘ (adj𝑇)) = 0hop𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2110  ccom 5618  cfv 6477  (class class class)co 7341  cr 10997  0cc0 10998  2c2 12172  cexp 13960   0hop ch0o 30913  normopcnop 30915  LinOpclo 30917  BndLinOpcbo 30918  adjcado 30925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980  ax-hfi 31049  ax-his1 31052  ax-his2 31053  ax-his3 31054  ax-his4 31055  ax-hcompl 31172
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-sum 15586  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-cn 23135  df-cnp 23136  df-lm 23137  df-t1 23222  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cfil 25175  df-cau 25176  df-cmet 25177  df-grpo 30463  df-gid 30464  df-ginv 30465  df-gdiv 30466  df-ablo 30515  df-vc 30529  df-nv 30562  df-va 30565  df-ba 30566  df-sm 30567  df-0v 30568  df-vs 30569  df-nmcv 30570  df-ims 30571  df-dip 30671  df-ssp 30692  df-lno 30714  df-nmoo 30715  df-0o 30717  df-ph 30783  df-cbn 30833  df-hnorm 30938  df-hba 30939  df-hvsub 30941  df-hlim 30942  df-hcau 30943  df-sh 31177  df-ch 31191  df-oc 31222  df-ch0 31223  df-shs 31278  df-pjh 31365  df-h0op 31718  df-nmop 31809  df-cnop 31810  df-lnop 31811  df-bdop 31812  df-unop 31813  df-hmop 31814  df-nmfn 31815  df-nlfn 31816  df-cnfn 31817  df-lnfn 31818  df-adjh 31819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator