HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadj0i Structured version   Visualization version   GIF version

Theorem nmopcoadj0i 31887
Description: An operator composed with its adjoint is zero iff the operator is zero. Theorem 3.11(vii) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadj0i ((𝑇 ∘ (adj𝑇)) = 0hop𝑇 = 0hop )

Proof of Theorem nmopcoadj0i
StepHypRef Expression
1 nmopcoadj.1 . . . . 5 𝑇 ∈ BndLinOp
21nmopcoadj2i 31886 . . . 4 (normop‘(𝑇 ∘ (adj𝑇))) = ((normop𝑇)↑2)
32eqeq1i 2732 . . 3 ((normop‘(𝑇 ∘ (adj𝑇))) = 0 ↔ ((normop𝑇)↑2) = 0)
4 nmopre 31654 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
51, 4ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
65recni 11244 . . . 4 (normop𝑇) ∈ ℂ
76sqeq0i 14163 . . 3 (((normop𝑇)↑2) = 0 ↔ (normop𝑇) = 0)
83, 7bitri 275 . 2 ((normop‘(𝑇 ∘ (adj𝑇))) = 0 ↔ (normop𝑇) = 0)
9 bdopln 31645 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
101, 9ax-mp 5 . . . 4 𝑇 ∈ LinOp
11 adjbdln 31867 . . . . . 6 (𝑇 ∈ BndLinOp → (adj𝑇) ∈ BndLinOp)
121, 11ax-mp 5 . . . . 5 (adj𝑇) ∈ BndLinOp
13 bdopln 31645 . . . . 5 ((adj𝑇) ∈ BndLinOp → (adj𝑇) ∈ LinOp)
1412, 13ax-mp 5 . . . 4 (adj𝑇) ∈ LinOp
1510, 14lnopcoi 31787 . . 3 (𝑇 ∘ (adj𝑇)) ∈ LinOp
1615nmlnop0iHIL 31780 . 2 ((normop‘(𝑇 ∘ (adj𝑇))) = 0 ↔ (𝑇 ∘ (adj𝑇)) = 0hop )
1710nmlnop0iHIL 31780 . 2 ((normop𝑇) = 0 ↔ 𝑇 = 0hop )
188, 16, 173bitr3i 301 1 ((𝑇 ∘ (adj𝑇)) = 0hop𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  ccom 5676  cfv 6542  (class class class)co 7414  cr 11123  0cc0 11124  2c2 12283  cexp 14044   0hop ch0o 30727  normopcnop 30729  LinOpclo 30731  BndLinOpcbo 30732  adjcado 30739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cc 10444  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203  ax-mulf 11204  ax-hilex 30783  ax-hfvadd 30784  ax-hvcom 30785  ax-hvass 30786  ax-hv0cl 30787  ax-hvaddid 30788  ax-hfvmul 30789  ax-hvmulid 30790  ax-hvmulass 30791  ax-hvdistr1 30792  ax-hvdistr2 30793  ax-hvmul0 30794  ax-hfi 30863  ax-his1 30866  ax-his2 30867  ax-his3 30868  ax-his4 30869  ax-hcompl 30986
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8716  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-inf 9452  df-oi 9519  df-card 9948  df-acn 9951  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ioo 13346  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-fl 13775  df-seq 13985  df-exp 14045  df-hash 14308  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-clim 15450  df-rlim 15451  df-sum 15651  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-pt 17411  df-prds 17414  df-xrs 17469  df-qtop 17474  df-imas 17475  df-xps 17477  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-mulg 19008  df-cntz 19252  df-cmn 19721  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-cn 23105  df-cnp 23106  df-lm 23107  df-t1 23192  df-haus 23193  df-tx 23440  df-hmeo 23633  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-xms 24200  df-ms 24201  df-tms 24202  df-cfil 25157  df-cau 25158  df-cmet 25159  df-grpo 30277  df-gid 30278  df-ginv 30279  df-gdiv 30280  df-ablo 30329  df-vc 30343  df-nv 30376  df-va 30379  df-ba 30380  df-sm 30381  df-0v 30382  df-vs 30383  df-nmcv 30384  df-ims 30385  df-dip 30485  df-ssp 30506  df-lno 30528  df-nmoo 30529  df-0o 30531  df-ph 30597  df-cbn 30647  df-hnorm 30752  df-hba 30753  df-hvsub 30755  df-hlim 30756  df-hcau 30757  df-sh 30991  df-ch 31005  df-oc 31036  df-ch0 31037  df-shs 31092  df-pjh 31179  df-h0op 31532  df-nmop 31623  df-cnop 31624  df-lnop 31625  df-bdop 31626  df-unop 31627  df-hmop 31628  df-nmfn 31629  df-nlfn 31630  df-cnfn 31631  df-lnfn 31632  df-adjh 31633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator