Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Structured version   Visualization version   GIF version

Theorem nmopcoi 29871
 Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoi (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))

Proof of Theorem nmopcoi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6 𝑆 ∈ BndLinOp
2 bdopln 29637 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑆 ∈ LinOp
4 nmoptri.2 . . . . . 6 𝑇 ∈ BndLinOp
5 bdopln 29637 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . . . 5 𝑇 ∈ LinOp
73, 6lnopcoi 29779 . . . 4 (𝑆𝑇) ∈ LinOp
87lnopfi 29745 . . 3 (𝑆𝑇): ℋ⟶ ℋ
9 nmopre 29646 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
101, 9ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
11 nmopre 29646 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
124, 11ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
1310, 12remulcli 10656 . . . 4 ((normop𝑆) · (normop𝑇)) ∈ ℝ
1413rexri 10698 . . 3 ((normop𝑆) · (normop𝑇)) ∈ ℝ*
15 nmopub 29684 . . 3 (((𝑆𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))))
168, 14, 15mp2an 690 . 2 ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
17 0le0 11737 . . . . . . 7 0 ≤ 0
1817a1i 11 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → 0 ≤ 0)
193, 6lnopco0i 29780 . . . . . . . 8 ((normop𝑇) = 0 → (normop‘(𝑆𝑇)) = 0)
207nmlnop0iHIL 29772 . . . . . . . 8 ((normop‘(𝑆𝑇)) = 0 ↔ (𝑆𝑇) = 0hop )
2119, 20sylib 220 . . . . . . 7 ((normop𝑇) = 0 → (𝑆𝑇) = 0hop )
22 fveq1 6668 . . . . . . . . 9 ((𝑆𝑇) = 0hop → ((𝑆𝑇)‘𝑥) = ( 0hop𝑥))
2322fveq2d 6673 . . . . . . . 8 ((𝑆𝑇) = 0hop → (norm‘((𝑆𝑇)‘𝑥)) = (norm‘( 0hop𝑥)))
24 ho0val 29526 . . . . . . . . . 10 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
2524fveq2d 6673 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = (norm‘0))
26 norm0 28904 . . . . . . . . 9 (norm‘0) = 0
2725, 26syl6eq 2872 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = 0)
2823, 27sylan9eq 2876 . . . . . . 7 (((𝑆𝑇) = 0hop𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
2921, 28sylan 582 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
30 oveq2 7163 . . . . . . . 8 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = ((normop𝑆) · 0))
3110recni 10654 . . . . . . . . 9 (normop𝑆) ∈ ℂ
3231mul01i 10829 . . . . . . . 8 ((normop𝑆) · 0) = 0
3330, 32syl6eq 2872 . . . . . . 7 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = 0)
3433adantr 483 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((normop𝑆) · (normop𝑇)) = 0)
3518, 29, 343brtr4d 5097 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
3635adantrr 715 . . . 4 (((normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
37 df-ne 3017 . . . . 5 ((normop𝑇) ≠ 0 ↔ ¬ (normop𝑇) = 0)
388ffvelrni 6849 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) ∈ ℋ)
39 normcl 28901 . . . . . . . . . . . . . . 15 (((𝑆𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4140recnd 10668 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ)
4212recni 10654 . . . . . . . . . . . . . 14 (normop𝑇) ∈ ℂ
43 divrec2 11314 . . . . . . . . . . . . . 14 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4442, 43mp3an2 1445 . . . . . . . . . . . . 13 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4541, 44sylan 582 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4645ancoms 461 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4712rerecclzi 11403 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℝ)
48 bdopf 29638 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
494, 48ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑇: ℋ⟶ ℋ
50 nmopgt0 29688 . . . . . . . . . . . . . . . . 17 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇))
5212recgt0i 11544 . . . . . . . . . . . . . . . 16 (0 < (normop𝑇) → 0 < (1 / (normop𝑇)))
5351, 52sylbi 219 . . . . . . . . . . . . . . 15 ((normop𝑇) ≠ 0 → 0 < (1 / (normop𝑇)))
54 0re 10642 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
55 ltle 10728 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (1 / (normop𝑇)) ∈ ℝ) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5654, 55mpan 688 . . . . . . . . . . . . . . 15 ((1 / (normop𝑇)) ∈ ℝ → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5747, 53, 56sylc 65 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 ≤ (1 / (normop𝑇)))
5847, 57absidd 14781 . . . . . . . . . . . . 13 ((normop𝑇) ≠ 0 → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
5958adantr 483 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
6059oveq1d 7170 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
6146, 60eqtr4d 2859 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6242recclzi 11364 . . . . . . . . . . 11 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℂ)
63 norm-iii 28916 . . . . . . . . . . 11 (((1 / (normop𝑇)) ∈ ℂ ∧ ((𝑆𝑇)‘𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6462, 38, 63syl2an 597 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6561, 64eqtr4d 2859 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
6649ffvelrni 6849 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
673lnopmuli 29748 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
6862, 66, 67syl2an 597 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
69 bdopf 29638 . . . . . . . . . . . . . . 15 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
701, 69ax-mp 5 . . . . . . . . . . . . . 14 𝑆: ℋ⟶ ℋ
7170, 49hocoi 29540 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
7271oveq2d 7171 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7372adantl 484 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7468, 73eqtr4d 2859 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)))
7574fveq2d 6673 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
7665, 75eqtr4d 2859 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
7776adantrr 715 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
78 hvmulcl 28789 . . . . . . . . . 10 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
7962, 66, 78syl2an 597 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
8079adantrr 715 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
81 norm-iii 28916 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
8262, 66, 81syl2an 597 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
83 normcl 28901 . . . . . . . . . . . . . . . 16 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8466, 83syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8584recnd 10668 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℂ)
86 divrec2 11314 . . . . . . . . . . . . . . 15 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8742, 86mp3an2 1445 . . . . . . . . . . . . . 14 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8885, 87sylan 582 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8988ancoms 461 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9059oveq1d 7170 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9189, 90eqtr4d 2859 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
9282, 91eqtr4d 2859 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
9392adantrr 715 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
94 nmoplb 29683 . . . . . . . . . . . . 13 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9549, 94mp3an1 1444 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9642mulid2i 10645 . . . . . . . . . . . 12 (1 · (normop𝑇)) = (normop𝑇)
9795, 96breqtrrdi 5107 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9897adantl 484 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9984adantr 483 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (norm‘(𝑇𝑥)) ∈ ℝ)
100 1red 10641 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 1 ∈ ℝ)
10112a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℝ)
10251biimpi 218 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 < (normop𝑇))
103102adantl 484 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
104 ledivmul2 11518 . . . . . . . . . . . . 13 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10599, 100, 101, 103, 104syl112anc 1370 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
106105ancoms 461 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
107106adantrr 715 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10898, 107mpbird 259 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1)
10993, 108eqbrtrd 5087 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1)
110 nmoplb 29683 . . . . . . . . 9 ((𝑆: ℋ⟶ ℋ ∧ ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11170, 110mp3an1 1444 . . . . . . . 8 ((((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11280, 109, 111syl2anc 586 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11377, 112eqbrtrd 5087 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆))
11440ad2antrl 726 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
11510a1i 11 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (normop𝑆) ∈ ℝ)
116102adantr 483 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 0 < (normop𝑇))
117116, 12jctil 522 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇)))
118 ledivmul2 11518 . . . . . . 7 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ ∧ (normop𝑆) ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
119114, 115, 117, 118syl3anc 1367 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
120113, 119mpbid 234 . . . . 5 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12137, 120sylanbr 584 . . . 4 ((¬ (normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12236, 121pm2.61ian 810 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
123122ex 415 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
12416, 123mprgbir 3153 1 (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110   ≠ wne 3016  ∀wral 3138   class class class wbr 5065   ∘ ccom 5558  ⟶wf 6350  ‘cfv 6354  (class class class)co 7155  ℂcc 10534  ℝcr 10535  0cc0 10536  1c1 10537   · cmul 10541  ℝ*cxr 10673   < clt 10674   ≤ cle 10675   / cdiv 11296  abscabs 14592   ℋchba 28695   ·ℎ csm 28697  normℎcno 28699  0ℎc0v 28700   0hop ch0o 28719  normopcnop 28721  LinOpclo 28723  BndLinOpcbo 28724 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616  ax-hilex 28775  ax-hfvadd 28776  ax-hvcom 28777  ax-hvass 28778  ax-hv0cl 28779  ax-hvaddid 28780  ax-hfvmul 28781  ax-hvmulid 28782  ax-hvmulass 28783  ax-hvdistr1 28784  ax-hvdistr2 28785  ax-hvmul0 28786  ax-hfi 28855  ax-his1 28858  ax-his2 28859  ax-his3 28860  ax-his4 28861  ax-hcompl 28978 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-cn 21834  df-cnp 21835  df-lm 21836  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cfil 23857  df-cau 23858  df-cmet 23859  df-grpo 28269  df-gid 28270  df-ginv 28271  df-gdiv 28272  df-ablo 28321  df-vc 28335  df-nv 28368  df-va 28371  df-ba 28372  df-sm 28373  df-0v 28374  df-vs 28375  df-nmcv 28376  df-ims 28377  df-dip 28477  df-ssp 28498  df-lno 28520  df-nmoo 28521  df-0o 28523  df-ph 28589  df-cbn 28639  df-hnorm 28744  df-hba 28745  df-hvsub 28747  df-hlim 28748  df-hcau 28749  df-sh 28983  df-ch 28997  df-oc 29028  df-ch0 29029  df-shs 29084  df-pjh 29171  df-h0op 29524  df-nmop 29615  df-lnop 29617  df-bdop 29618  df-hmop 29620 This theorem is referenced by:  bdopcoi  29874  unierri  29880
 Copyright terms: Public domain W3C validator