HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Structured version   Visualization version   GIF version

Theorem nmopcoi 32024
Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoi (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))

Proof of Theorem nmopcoi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6 𝑆 ∈ BndLinOp
2 bdopln 31790 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑆 ∈ LinOp
4 nmoptri.2 . . . . . 6 𝑇 ∈ BndLinOp
5 bdopln 31790 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . . . 5 𝑇 ∈ LinOp
73, 6lnopcoi 31932 . . . 4 (𝑆𝑇) ∈ LinOp
87lnopfi 31898 . . 3 (𝑆𝑇): ℋ⟶ ℋ
9 nmopre 31799 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
101, 9ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
11 nmopre 31799 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
124, 11ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
1310, 12remulcli 11190 . . . 4 ((normop𝑆) · (normop𝑇)) ∈ ℝ
1413rexri 11232 . . 3 ((normop𝑆) · (normop𝑇)) ∈ ℝ*
15 nmopub 31837 . . 3 (((𝑆𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))))
168, 14, 15mp2an 692 . 2 ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
17 0le0 12287 . . . . . . 7 0 ≤ 0
1817a1i 11 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → 0 ≤ 0)
193, 6lnopco0i 31933 . . . . . . . 8 ((normop𝑇) = 0 → (normop‘(𝑆𝑇)) = 0)
207nmlnop0iHIL 31925 . . . . . . . 8 ((normop‘(𝑆𝑇)) = 0 ↔ (𝑆𝑇) = 0hop )
2119, 20sylib 218 . . . . . . 7 ((normop𝑇) = 0 → (𝑆𝑇) = 0hop )
22 fveq1 6857 . . . . . . . . 9 ((𝑆𝑇) = 0hop → ((𝑆𝑇)‘𝑥) = ( 0hop𝑥))
2322fveq2d 6862 . . . . . . . 8 ((𝑆𝑇) = 0hop → (norm‘((𝑆𝑇)‘𝑥)) = (norm‘( 0hop𝑥)))
24 ho0val 31679 . . . . . . . . . 10 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
2524fveq2d 6862 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = (norm‘0))
26 norm0 31057 . . . . . . . . 9 (norm‘0) = 0
2725, 26eqtrdi 2780 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = 0)
2823, 27sylan9eq 2784 . . . . . . 7 (((𝑆𝑇) = 0hop𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
2921, 28sylan 580 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
30 oveq2 7395 . . . . . . . 8 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = ((normop𝑆) · 0))
3110recni 11188 . . . . . . . . 9 (normop𝑆) ∈ ℂ
3231mul01i 11364 . . . . . . . 8 ((normop𝑆) · 0) = 0
3330, 32eqtrdi 2780 . . . . . . 7 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = 0)
3433adantr 480 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((normop𝑆) · (normop𝑇)) = 0)
3518, 29, 343brtr4d 5139 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
3635adantrr 717 . . . 4 (((normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
37 df-ne 2926 . . . . 5 ((normop𝑇) ≠ 0 ↔ ¬ (normop𝑇) = 0)
388ffvelcdmi 7055 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) ∈ ℋ)
39 normcl 31054 . . . . . . . . . . . . . . 15 (((𝑆𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4140recnd 11202 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ)
4212recni 11188 . . . . . . . . . . . . . 14 (normop𝑇) ∈ ℂ
43 divrec2 11854 . . . . . . . . . . . . . 14 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4442, 43mp3an2 1451 . . . . . . . . . . . . 13 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4541, 44sylan 580 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4645ancoms 458 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4712rerecclzi 11946 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℝ)
48 bdopf 31791 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
494, 48ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑇: ℋ⟶ ℋ
50 nmopgt0 31841 . . . . . . . . . . . . . . . . 17 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇))
5212recgt0i 12088 . . . . . . . . . . . . . . . 16 (0 < (normop𝑇) → 0 < (1 / (normop𝑇)))
5351, 52sylbi 217 . . . . . . . . . . . . . . 15 ((normop𝑇) ≠ 0 → 0 < (1 / (normop𝑇)))
54 0re 11176 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
55 ltle 11262 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (1 / (normop𝑇)) ∈ ℝ) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5654, 55mpan 690 . . . . . . . . . . . . . . 15 ((1 / (normop𝑇)) ∈ ℝ → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5747, 53, 56sylc 65 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 ≤ (1 / (normop𝑇)))
5847, 57absidd 15389 . . . . . . . . . . . . 13 ((normop𝑇) ≠ 0 → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
5958adantr 480 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
6059oveq1d 7402 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
6146, 60eqtr4d 2767 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6242recclzi 11907 . . . . . . . . . . 11 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℂ)
63 norm-iii 31069 . . . . . . . . . . 11 (((1 / (normop𝑇)) ∈ ℂ ∧ ((𝑆𝑇)‘𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6462, 38, 63syl2an 596 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6561, 64eqtr4d 2767 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
6649ffvelcdmi 7055 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
673lnopmuli 31901 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
6862, 66, 67syl2an 596 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
69 bdopf 31791 . . . . . . . . . . . . . . 15 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
701, 69ax-mp 5 . . . . . . . . . . . . . 14 𝑆: ℋ⟶ ℋ
7170, 49hocoi 31693 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
7271oveq2d 7403 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7372adantl 481 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7468, 73eqtr4d 2767 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)))
7574fveq2d 6862 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
7665, 75eqtr4d 2767 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
7776adantrr 717 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
78 hvmulcl 30942 . . . . . . . . . 10 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
7962, 66, 78syl2an 596 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
8079adantrr 717 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
81 norm-iii 31069 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
8262, 66, 81syl2an 596 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
83 normcl 31054 . . . . . . . . . . . . . . . 16 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8466, 83syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8584recnd 11202 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℂ)
86 divrec2 11854 . . . . . . . . . . . . . . 15 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8742, 86mp3an2 1451 . . . . . . . . . . . . . 14 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8885, 87sylan 580 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8988ancoms 458 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9059oveq1d 7402 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9189, 90eqtr4d 2767 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
9282, 91eqtr4d 2767 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
9392adantrr 717 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
94 nmoplb 31836 . . . . . . . . . . . . 13 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9549, 94mp3an1 1450 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9642mullidi 11179 . . . . . . . . . . . 12 (1 · (normop𝑇)) = (normop𝑇)
9795, 96breqtrrdi 5149 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9897adantl 481 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9984adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (norm‘(𝑇𝑥)) ∈ ℝ)
100 1red 11175 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 1 ∈ ℝ)
10112a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℝ)
10251biimpi 216 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 < (normop𝑇))
103102adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
104 ledivmul2 12062 . . . . . . . . . . . . 13 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10599, 100, 101, 103, 104syl112anc 1376 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
106105ancoms 458 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
107106adantrr 717 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10898, 107mpbird 257 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1)
10993, 108eqbrtrd 5129 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1)
110 nmoplb 31836 . . . . . . . . 9 ((𝑆: ℋ⟶ ℋ ∧ ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11170, 110mp3an1 1450 . . . . . . . 8 ((((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11280, 109, 111syl2anc 584 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11377, 112eqbrtrd 5129 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆))
11440ad2antrl 728 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
11510a1i 11 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (normop𝑆) ∈ ℝ)
116102adantr 480 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 0 < (normop𝑇))
117116, 12jctil 519 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇)))
118 ledivmul2 12062 . . . . . . 7 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ ∧ (normop𝑆) ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
119114, 115, 117, 118syl3anc 1373 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
120113, 119mpbid 232 . . . . 5 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12137, 120sylanbr 582 . . . 4 ((¬ (normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12236, 121pm2.61ian 811 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
123122ex 412 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
12416, 123mprgbir 3051 1 (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5107  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  abscabs 15200  chba 30848   · csm 30850  normcno 30852  0c0v 30853   0hop ch0o 30872  normopcnop 30874  LinOpclo 30876  BndLinOpcbo 30877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-lno 30673  df-nmoo 30674  df-0o 30676  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-shs 31237  df-pjh 31324  df-h0op 31677  df-nmop 31768  df-lnop 31770  df-bdop 31771  df-hmop 31773
This theorem is referenced by:  bdopcoi  32027  unierri  32033
  Copyright terms: Public domain W3C validator