| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nmoptri.1 | . . . . . 6
⊢ 𝑆 ∈
BndLinOp | 
| 2 |  | bdopln 31880 | . . . . . 6
⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp) | 
| 3 | 1, 2 | ax-mp 5 | . . . . 5
⊢ 𝑆 ∈ LinOp | 
| 4 |  | nmoptri.2 | . . . . . 6
⊢ 𝑇 ∈
BndLinOp | 
| 5 |  | bdopln 31880 | . . . . . 6
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | 
| 6 | 4, 5 | ax-mp 5 | . . . . 5
⊢ 𝑇 ∈ LinOp | 
| 7 | 3, 6 | lnopcoi 32022 | . . . 4
⊢ (𝑆 ∘ 𝑇) ∈ LinOp | 
| 8 | 7 | lnopfi 31988 | . . 3
⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ | 
| 9 |  | nmopre 31889 | . . . . . 6
⊢ (𝑆 ∈ BndLinOp →
(normop‘𝑆)
∈ ℝ) | 
| 10 | 1, 9 | ax-mp 5 | . . . . 5
⊢
(normop‘𝑆) ∈ ℝ | 
| 11 |  | nmopre 31889 | . . . . . 6
⊢ (𝑇 ∈ BndLinOp →
(normop‘𝑇)
∈ ℝ) | 
| 12 | 4, 11 | ax-mp 5 | . . . . 5
⊢
(normop‘𝑇) ∈ ℝ | 
| 13 | 10, 12 | remulcli 11277 | . . . 4
⊢
((normop‘𝑆) · (normop‘𝑇)) ∈
ℝ | 
| 14 | 13 | rexri 11319 | . . 3
⊢
((normop‘𝑆) · (normop‘𝑇)) ∈
ℝ* | 
| 15 |  | nmopub 31927 | . . 3
⊢ (((𝑆 ∘ 𝑇): ℋ⟶ ℋ ∧
((normop‘𝑆) · (normop‘𝑇)) ∈ ℝ*)
→ ((normop‘(𝑆 ∘ 𝑇)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇))))) | 
| 16 | 8, 14, 15 | mp2an 692 | . 2
⊢
((normop‘(𝑆 ∘ 𝑇)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)))) | 
| 17 |  | 0le0 12367 | . . . . . . 7
⊢ 0 ≤
0 | 
| 18 | 17 | a1i 11 | . . . . . 6
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) → 0 ≤
0) | 
| 19 | 3, 6 | lnopco0i 32023 | . . . . . . . 8
⊢
((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) | 
| 20 | 7 | nmlnop0iHIL 32015 | . . . . . . . 8
⊢
((normop‘(𝑆 ∘ 𝑇)) = 0 ↔ (𝑆 ∘ 𝑇) = 0hop ) | 
| 21 | 19, 20 | sylib 218 | . . . . . . 7
⊢
((normop‘𝑇) = 0 → (𝑆 ∘ 𝑇) = 0hop ) | 
| 22 |  | fveq1 6905 | . . . . . . . . 9
⊢ ((𝑆 ∘ 𝑇) = 0hop → ((𝑆 ∘ 𝑇)‘𝑥) = ( 0hop ‘𝑥)) | 
| 23 | 22 | fveq2d 6910 | . . . . . . . 8
⊢ ((𝑆 ∘ 𝑇) = 0hop →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) = (normℎ‘(
0hop ‘𝑥))) | 
| 24 |  | ho0val 31769 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℋ → (
0hop ‘𝑥) =
0ℎ) | 
| 25 | 24 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑥 ∈ ℋ →
(normℎ‘( 0hop ‘𝑥)) =
(normℎ‘0ℎ)) | 
| 26 |  | norm0 31147 | . . . . . . . . 9
⊢
(normℎ‘0ℎ) =
0 | 
| 27 | 25, 26 | eqtrdi 2793 | . . . . . . . 8
⊢ (𝑥 ∈ ℋ →
(normℎ‘( 0hop ‘𝑥)) = 0) | 
| 28 | 23, 27 | sylan9eq 2797 | . . . . . . 7
⊢ (((𝑆 ∘ 𝑇) = 0hop ∧ 𝑥 ∈ ℋ) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) = 0) | 
| 29 | 21, 28 | sylan 580 | . . . . . 6
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) = 0) | 
| 30 |  | oveq2 7439 | . . . . . . . 8
⊢
((normop‘𝑇) = 0 → ((normop‘𝑆) ·
(normop‘𝑇)) = ((normop‘𝑆) · 0)) | 
| 31 | 10 | recni 11275 | . . . . . . . . 9
⊢
(normop‘𝑆) ∈ ℂ | 
| 32 | 31 | mul01i 11451 | . . . . . . . 8
⊢
((normop‘𝑆) · 0) = 0 | 
| 33 | 30, 32 | eqtrdi 2793 | . . . . . . 7
⊢
((normop‘𝑇) = 0 → ((normop‘𝑆) ·
(normop‘𝑇)) = 0) | 
| 34 | 33 | adantr 480 | . . . . . 6
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) →
((normop‘𝑆) · (normop‘𝑇)) = 0) | 
| 35 | 18, 29, 34 | 3brtr4d 5175 | . . . . 5
⊢
(((normop‘𝑇) = 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇))) | 
| 36 | 35 | adantrr 717 | . . . 4
⊢
(((normop‘𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇))) | 
| 37 |  | df-ne 2941 | . . . . 5
⊢
((normop‘𝑇) ≠ 0 ↔ ¬
(normop‘𝑇)
= 0) | 
| 38 | 8 | ffvelcdmi 7103 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) ∈ ℋ) | 
| 39 |  | normcl 31144 | . . . . . . . . . . . . . . 15
⊢ (((𝑆 ∘ 𝑇)‘𝑥) ∈ ℋ →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℝ) | 
| 40 | 38, 39 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℝ) | 
| 41 | 40 | recnd 11289 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℂ) | 
| 42 | 12 | recni 11275 | . . . . . . . . . . . . . 14
⊢
(normop‘𝑇) ∈ ℂ | 
| 43 |  | divrec2 11939 | . . . . . . . . . . . . . 14
⊢
(((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℂ ∧
(normop‘𝑇)
∈ ℂ ∧ (normop‘𝑇) ≠ 0) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 44 | 42, 43 | mp3an2 1451 | . . . . . . . . . . . . 13
⊢
(((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℂ ∧
(normop‘𝑇)
≠ 0) → ((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 45 | 41, 44 | sylan 580 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → ((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 46 | 45 | ancoms 458 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 47 | 12 | rerecclzi 12031 | . . . . . . . . . . . . . 14
⊢
((normop‘𝑇) ≠ 0 → (1 /
(normop‘𝑇)) ∈ ℝ) | 
| 48 |  | bdopf 31881 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶
ℋ) | 
| 49 | 4, 48 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ 𝑇: ℋ⟶
ℋ | 
| 50 |  | nmopgt0 31931 | . . . . . . . . . . . . . . . . 17
⊢ (𝑇: ℋ⟶ ℋ →
((normop‘𝑇) ≠ 0 ↔ 0 <
(normop‘𝑇))) | 
| 51 | 49, 50 | ax-mp 5 | . . . . . . . . . . . . . . . 16
⊢
((normop‘𝑇) ≠ 0 ↔ 0 <
(normop‘𝑇)) | 
| 52 | 12 | recgt0i 12173 | . . . . . . . . . . . . . . . 16
⊢ (0 <
(normop‘𝑇)
→ 0 < (1 / (normop‘𝑇))) | 
| 53 | 51, 52 | sylbi 217 | . . . . . . . . . . . . . . 15
⊢
((normop‘𝑇) ≠ 0 → 0 < (1 /
(normop‘𝑇))) | 
| 54 |  | 0re 11263 | . . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ | 
| 55 |  | ltle 11349 | . . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ (1 / (normop‘𝑇)) ∈ ℝ) → (0 < (1 /
(normop‘𝑇)) → 0 ≤ (1 /
(normop‘𝑇)))) | 
| 56 | 54, 55 | mpan 690 | . . . . . . . . . . . . . . 15
⊢ ((1 /
(normop‘𝑇)) ∈ ℝ → (0 < (1 /
(normop‘𝑇)) → 0 ≤ (1 /
(normop‘𝑇)))) | 
| 57 | 47, 53, 56 | sylc 65 | . . . . . . . . . . . . . 14
⊢
((normop‘𝑇) ≠ 0 → 0 ≤ (1 /
(normop‘𝑇))) | 
| 58 | 47, 57 | absidd 15461 | . . . . . . . . . . . . 13
⊢
((normop‘𝑇) ≠ 0 → (abs‘(1 /
(normop‘𝑇))) = (1 / (normop‘𝑇))) | 
| 59 | 58 | adantr 480 | . . . . . . . . . . . 12
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (abs‘(1 /
(normop‘𝑇))) = (1 / (normop‘𝑇))) | 
| 60 | 59 | oveq1d 7446 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥))) = ((1 / (normop‘𝑇)) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 61 | 46, 60 | eqtr4d 2780 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) = ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 62 | 42 | recclzi 11992 | . . . . . . . . . . 11
⊢
((normop‘𝑇) ≠ 0 → (1 /
(normop‘𝑇)) ∈ ℂ) | 
| 63 |  | norm-iii 31159 | . . . . . . . . . . 11
⊢ (((1 /
(normop‘𝑇)) ∈ ℂ ∧ ((𝑆 ∘ 𝑇)‘𝑥) ∈ ℋ) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ
((𝑆 ∘ 𝑇)‘𝑥))) = ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 64 | 62, 38, 63 | syl2an 596 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ
((𝑆 ∘ 𝑇)‘𝑥))) = ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 65 | 61, 64 | eqtr4d 2780 | . . . . . . . . 9
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) =
(normℎ‘((1 / (normop‘𝑇)) ·ℎ
((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 66 | 49 | ffvelcdmi 7103 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) | 
| 67 | 3 | lnopmuli 31991 | . . . . . . . . . . . 12
⊢ (((1 /
(normop‘𝑇)) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → (𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥))) = ((1 / (normop‘𝑇))
·ℎ (𝑆‘(𝑇‘𝑥)))) | 
| 68 | 62, 66, 67 | syl2an 596 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥))) = ((1 / (normop‘𝑇))
·ℎ (𝑆‘(𝑇‘𝑥)))) | 
| 69 |  | bdopf 31881 | . . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶
ℋ) | 
| 70 | 1, 69 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ 𝑆: ℋ⟶
ℋ | 
| 71 | 70, 49 | hocoi 31783 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℋ → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) | 
| 72 | 71 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℋ → ((1 /
(normop‘𝑇)) ·ℎ
((𝑆 ∘ 𝑇)‘𝑥)) = ((1 / (normop‘𝑇))
·ℎ (𝑆‘(𝑇‘𝑥)))) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 /
(normop‘𝑇)) ·ℎ
((𝑆 ∘ 𝑇)‘𝑥)) = ((1 / (normop‘𝑇))
·ℎ (𝑆‘(𝑇‘𝑥)))) | 
| 74 | 68, 73 | eqtr4d 2780 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥))) = ((1 / (normop‘𝑇))
·ℎ ((𝑆 ∘ 𝑇)‘𝑥))) | 
| 75 | 74 | fveq2d 6910 | . . . . . . . . 9
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘(𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥)))) = (normℎ‘((1 /
(normop‘𝑇)) ·ℎ
((𝑆 ∘ 𝑇)‘𝑥)))) | 
| 76 | 65, 75 | eqtr4d 2780 | . . . . . . . 8
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) =
(normℎ‘(𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥))))) | 
| 77 | 76 | adantrr 717 | . . . . . . 7
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) =
(normℎ‘(𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥))))) | 
| 78 |  | hvmulcl 31032 | . . . . . . . . . 10
⊢ (((1 /
(normop‘𝑇)) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) → ((1 /
(normop‘𝑇)) ·ℎ (𝑇‘𝑥)) ∈ ℋ) | 
| 79 | 62, 66, 78 | syl2an 596 | . . . . . . . . 9
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 /
(normop‘𝑇)) ·ℎ (𝑇‘𝑥)) ∈ ℋ) | 
| 80 | 79 | adantrr 717 | . . . . . . . 8
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) → ((1 /
(normop‘𝑇)) ·ℎ (𝑇‘𝑥)) ∈ ℋ) | 
| 81 |  | norm-iii 31159 | . . . . . . . . . . . 12
⊢ (((1 /
(normop‘𝑇)) ∈ ℂ ∧ (𝑇‘𝑥) ∈ ℋ) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) = ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 82 | 62, 66, 81 | syl2an 596 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) = ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 83 |  | normcl 31144 | . . . . . . . . . . . . . . . 16
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) | 
| 84 | 66, 83 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) | 
| 85 | 84 | recnd 11289 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℂ) | 
| 86 |  | divrec2 11939 | . . . . . . . . . . . . . . 15
⊢
(((normℎ‘(𝑇‘𝑥)) ∈ ℂ ∧
(normop‘𝑇)
∈ ℂ ∧ (normop‘𝑇) ≠ 0) →
((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 87 | 42, 86 | mp3an2 1451 | . . . . . . . . . . . . . 14
⊢
(((normℎ‘(𝑇‘𝑥)) ∈ ℂ ∧
(normop‘𝑇)
≠ 0) → ((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 88 | 85, 87 | sylan 580 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → ((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 89 | 88 | ancoms 458 | . . . . . . . . . . . 12
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) = ((1 /
(normop‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 90 | 59 | oveq1d 7446 | . . . . . . . . . . . 12
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘(𝑇‘𝑥))) = ((1 / (normop‘𝑇)) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 91 | 89, 90 | eqtr4d 2780 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) = ((abs‘(1 /
(normop‘𝑇))) ·
(normℎ‘(𝑇‘𝑥)))) | 
| 92 | 82, 91 | eqtr4d 2780 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) = ((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇))) | 
| 93 | 92 | adantrr 717 | . . . . . . . . 9
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) = ((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇))) | 
| 94 |  | nmoplb 31926 | . . . . . . . . . . . . 13
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) | 
| 95 | 49, 94 | mp3an1 1450 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) | 
| 96 | 42 | mullidi 11266 | . . . . . . . . . . . 12
⊢ (1
· (normop‘𝑇)) = (normop‘𝑇) | 
| 97 | 95, 96 | breqtrrdi 5185 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (1 ·
(normop‘𝑇))) | 
| 98 | 97 | adantl 481 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘(𝑇‘𝑥)) ≤ (1 ·
(normop‘𝑇))) | 
| 99 | 84 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → (normℎ‘(𝑇‘𝑥)) ∈ ℝ) | 
| 100 |  | 1red 11262 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → 1 ∈ ℝ) | 
| 101 | 12 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → (normop‘𝑇) ∈ ℝ) | 
| 102 | 51 | biimpi 216 | . . . . . . . . . . . . . 14
⊢
((normop‘𝑇) ≠ 0 → 0 <
(normop‘𝑇)) | 
| 103 | 102 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → 0 < (normop‘𝑇)) | 
| 104 |  | ledivmul2 12147 | . . . . . . . . . . . . 13
⊢
(((normℎ‘(𝑇‘𝑥)) ∈ ℝ ∧ 1 ∈ ℝ
∧ ((normop‘𝑇) ∈ ℝ ∧ 0 <
(normop‘𝑇))) →
(((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) ≤ 1 ↔
(normℎ‘(𝑇‘𝑥)) ≤ (1 ·
(normop‘𝑇)))) | 
| 105 | 99, 100, 101, 103, 104 | syl112anc 1376 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℋ ∧
(normop‘𝑇)
≠ 0) → (((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) ≤ 1 ↔
(normℎ‘(𝑇‘𝑥)) ≤ (1 ·
(normop‘𝑇)))) | 
| 106 | 105 | ancoms 458 | . . . . . . . . . . 11
⊢
(((normop‘𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) →
(((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) ≤ 1 ↔
(normℎ‘(𝑇‘𝑥)) ≤ (1 ·
(normop‘𝑇)))) | 
| 107 | 106 | adantrr 717 | . . . . . . . . . 10
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) ≤ 1 ↔
(normℎ‘(𝑇‘𝑥)) ≤ (1 ·
(normop‘𝑇)))) | 
| 108 | 98, 107 | mpbird 257 | . . . . . . . . 9
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
((normℎ‘(𝑇‘𝑥)) / (normop‘𝑇)) ≤ 1) | 
| 109 | 93, 108 | eqbrtrd 5165 | . . . . . . . 8
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) ≤ 1) | 
| 110 |  | nmoplb 31926 | . . . . . . . . 9
⊢ ((𝑆: ℋ⟶ ℋ ∧
((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥)) ∈ ℋ ∧
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) ≤ 1) →
(normℎ‘(𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥)))) ≤ (normop‘𝑆)) | 
| 111 | 70, 110 | mp3an1 1450 | . . . . . . . 8
⊢ ((((1 /
(normop‘𝑇)) ·ℎ (𝑇‘𝑥)) ∈ ℋ ∧
(normℎ‘((1 / (normop‘𝑇)) ·ℎ (𝑇‘𝑥))) ≤ 1) →
(normℎ‘(𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥)))) ≤ (normop‘𝑆)) | 
| 112 | 80, 109, 111 | syl2anc 584 | . . . . . . 7
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘(𝑆‘((1 / (normop‘𝑇))
·ℎ (𝑇‘𝑥)))) ≤ (normop‘𝑆)) | 
| 113 | 77, 112 | eqbrtrd 5165 | . . . . . 6
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) ≤
(normop‘𝑆)) | 
| 114 | 40 | ad2antrl 728 | . . . . . . 7
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℝ) | 
| 115 | 10 | a1i 11 | . . . . . . 7
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normop‘𝑆)
∈ ℝ) | 
| 116 | 102 | adantr 480 | . . . . . . . 8
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) → 0 <
(normop‘𝑇)) | 
| 117 | 116, 12 | jctil 519 | . . . . . . 7
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
((normop‘𝑇) ∈ ℝ ∧ 0 <
(normop‘𝑇))) | 
| 118 |  | ledivmul2 12147 | . . . . . . 7
⊢
(((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ∈ ℝ ∧
(normop‘𝑆)
∈ ℝ ∧ ((normop‘𝑇) ∈ ℝ ∧ 0 <
(normop‘𝑇))) →
(((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) ≤
(normop‘𝑆)
↔ (normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)))) | 
| 119 | 114, 115,
117, 118 | syl3anc 1373 | . . . . . 6
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(((normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) / (normop‘𝑇)) ≤
(normop‘𝑆)
↔ (normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)))) | 
| 120 | 113, 119 | mpbid 232 | . . . . 5
⊢
(((normop‘𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1)) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇))) | 
| 121 | 37, 120 | sylanbr 582 | . . . 4
⊢ ((¬
(normop‘𝑇)
= 0 ∧ (𝑥 ∈ ℋ
∧ (normℎ‘𝑥) ≤ 1)) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇))) | 
| 122 | 36, 121 | pm2.61ian 812 | . . 3
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇))) | 
| 123 | 122 | ex 412 | . 2
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝑆 ∘ 𝑇)‘𝑥)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)))) | 
| 124 | 16, 123 | mprgbir 3068 | 1
⊢
(normop‘(𝑆 ∘ 𝑇)) ≤ ((normop‘𝑆) ·
(normop‘𝑇)) |