HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Structured version   Visualization version   GIF version

Theorem nmopcoi 32031
Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoi (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))

Proof of Theorem nmopcoi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6 𝑆 ∈ BndLinOp
2 bdopln 31797 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑆 ∈ LinOp
4 nmoptri.2 . . . . . 6 𝑇 ∈ BndLinOp
5 bdopln 31797 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . . . 5 𝑇 ∈ LinOp
73, 6lnopcoi 31939 . . . 4 (𝑆𝑇) ∈ LinOp
87lnopfi 31905 . . 3 (𝑆𝑇): ℋ⟶ ℋ
9 nmopre 31806 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
101, 9ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
11 nmopre 31806 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
124, 11ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
1310, 12remulcli 11197 . . . 4 ((normop𝑆) · (normop𝑇)) ∈ ℝ
1413rexri 11239 . . 3 ((normop𝑆) · (normop𝑇)) ∈ ℝ*
15 nmopub 31844 . . 3 (((𝑆𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))))
168, 14, 15mp2an 692 . 2 ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
17 0le0 12294 . . . . . . 7 0 ≤ 0
1817a1i 11 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → 0 ≤ 0)
193, 6lnopco0i 31940 . . . . . . . 8 ((normop𝑇) = 0 → (normop‘(𝑆𝑇)) = 0)
207nmlnop0iHIL 31932 . . . . . . . 8 ((normop‘(𝑆𝑇)) = 0 ↔ (𝑆𝑇) = 0hop )
2119, 20sylib 218 . . . . . . 7 ((normop𝑇) = 0 → (𝑆𝑇) = 0hop )
22 fveq1 6860 . . . . . . . . 9 ((𝑆𝑇) = 0hop → ((𝑆𝑇)‘𝑥) = ( 0hop𝑥))
2322fveq2d 6865 . . . . . . . 8 ((𝑆𝑇) = 0hop → (norm‘((𝑆𝑇)‘𝑥)) = (norm‘( 0hop𝑥)))
24 ho0val 31686 . . . . . . . . . 10 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
2524fveq2d 6865 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = (norm‘0))
26 norm0 31064 . . . . . . . . 9 (norm‘0) = 0
2725, 26eqtrdi 2781 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = 0)
2823, 27sylan9eq 2785 . . . . . . 7 (((𝑆𝑇) = 0hop𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
2921, 28sylan 580 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
30 oveq2 7398 . . . . . . . 8 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = ((normop𝑆) · 0))
3110recni 11195 . . . . . . . . 9 (normop𝑆) ∈ ℂ
3231mul01i 11371 . . . . . . . 8 ((normop𝑆) · 0) = 0
3330, 32eqtrdi 2781 . . . . . . 7 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = 0)
3433adantr 480 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((normop𝑆) · (normop𝑇)) = 0)
3518, 29, 343brtr4d 5142 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
3635adantrr 717 . . . 4 (((normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
37 df-ne 2927 . . . . 5 ((normop𝑇) ≠ 0 ↔ ¬ (normop𝑇) = 0)
388ffvelcdmi 7058 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) ∈ ℋ)
39 normcl 31061 . . . . . . . . . . . . . . 15 (((𝑆𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4140recnd 11209 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ)
4212recni 11195 . . . . . . . . . . . . . 14 (normop𝑇) ∈ ℂ
43 divrec2 11861 . . . . . . . . . . . . . 14 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4442, 43mp3an2 1451 . . . . . . . . . . . . 13 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4541, 44sylan 580 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4645ancoms 458 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4712rerecclzi 11953 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℝ)
48 bdopf 31798 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
494, 48ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑇: ℋ⟶ ℋ
50 nmopgt0 31848 . . . . . . . . . . . . . . . . 17 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇))
5212recgt0i 12095 . . . . . . . . . . . . . . . 16 (0 < (normop𝑇) → 0 < (1 / (normop𝑇)))
5351, 52sylbi 217 . . . . . . . . . . . . . . 15 ((normop𝑇) ≠ 0 → 0 < (1 / (normop𝑇)))
54 0re 11183 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
55 ltle 11269 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (1 / (normop𝑇)) ∈ ℝ) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5654, 55mpan 690 . . . . . . . . . . . . . . 15 ((1 / (normop𝑇)) ∈ ℝ → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5747, 53, 56sylc 65 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 ≤ (1 / (normop𝑇)))
5847, 57absidd 15396 . . . . . . . . . . . . 13 ((normop𝑇) ≠ 0 → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
5958adantr 480 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
6059oveq1d 7405 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
6146, 60eqtr4d 2768 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6242recclzi 11914 . . . . . . . . . . 11 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℂ)
63 norm-iii 31076 . . . . . . . . . . 11 (((1 / (normop𝑇)) ∈ ℂ ∧ ((𝑆𝑇)‘𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6462, 38, 63syl2an 596 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6561, 64eqtr4d 2768 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
6649ffvelcdmi 7058 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
673lnopmuli 31908 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
6862, 66, 67syl2an 596 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
69 bdopf 31798 . . . . . . . . . . . . . . 15 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
701, 69ax-mp 5 . . . . . . . . . . . . . 14 𝑆: ℋ⟶ ℋ
7170, 49hocoi 31700 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
7271oveq2d 7406 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7372adantl 481 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7468, 73eqtr4d 2768 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)))
7574fveq2d 6865 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
7665, 75eqtr4d 2768 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
7776adantrr 717 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
78 hvmulcl 30949 . . . . . . . . . 10 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
7962, 66, 78syl2an 596 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
8079adantrr 717 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
81 norm-iii 31076 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
8262, 66, 81syl2an 596 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
83 normcl 31061 . . . . . . . . . . . . . . . 16 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8466, 83syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8584recnd 11209 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℂ)
86 divrec2 11861 . . . . . . . . . . . . . . 15 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8742, 86mp3an2 1451 . . . . . . . . . . . . . 14 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8885, 87sylan 580 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8988ancoms 458 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9059oveq1d 7405 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9189, 90eqtr4d 2768 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
9282, 91eqtr4d 2768 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
9392adantrr 717 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
94 nmoplb 31843 . . . . . . . . . . . . 13 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9549, 94mp3an1 1450 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9642mullidi 11186 . . . . . . . . . . . 12 (1 · (normop𝑇)) = (normop𝑇)
9795, 96breqtrrdi 5152 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9897adantl 481 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9984adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (norm‘(𝑇𝑥)) ∈ ℝ)
100 1red 11182 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 1 ∈ ℝ)
10112a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℝ)
10251biimpi 216 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 < (normop𝑇))
103102adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
104 ledivmul2 12069 . . . . . . . . . . . . 13 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10599, 100, 101, 103, 104syl112anc 1376 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
106105ancoms 458 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
107106adantrr 717 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10898, 107mpbird 257 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1)
10993, 108eqbrtrd 5132 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1)
110 nmoplb 31843 . . . . . . . . 9 ((𝑆: ℋ⟶ ℋ ∧ ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11170, 110mp3an1 1450 . . . . . . . 8 ((((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11280, 109, 111syl2anc 584 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11377, 112eqbrtrd 5132 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆))
11440ad2antrl 728 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
11510a1i 11 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (normop𝑆) ∈ ℝ)
116102adantr 480 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 0 < (normop𝑇))
117116, 12jctil 519 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇)))
118 ledivmul2 12069 . . . . . . 7 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ ∧ (normop𝑆) ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
119114, 115, 117, 118syl3anc 1373 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
120113, 119mpbid 232 . . . . 5 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12137, 120sylanbr 582 . . . 4 ((¬ (normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12236, 121pm2.61ian 811 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
123122ex 412 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
12416, 123mprgbir 3052 1 (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045   class class class wbr 5110  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  abscabs 15207  chba 30855   · csm 30857  normcno 30859  0c0v 30860   0hop ch0o 30879  normopcnop 30881  LinOpclo 30883  BndLinOpcbo 30884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-ssp 30658  df-lno 30680  df-nmoo 30681  df-0o 30683  df-ph 30749  df-cbn 30799  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-pjh 31331  df-h0op 31684  df-nmop 31775  df-lnop 31777  df-bdop 31778  df-hmop 31780
This theorem is referenced by:  bdopcoi  32034  unierri  32040
  Copyright terms: Public domain W3C validator