HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoi Structured version   Visualization version   GIF version

Theorem nmopcoi 29526
Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoi (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))

Proof of Theorem nmopcoi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . . 6 𝑆 ∈ BndLinOp
2 bdopln 29292 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑆 ∈ LinOp
4 nmoptri.2 . . . . . 6 𝑇 ∈ BndLinOp
5 bdopln 29292 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . . . 5 𝑇 ∈ LinOp
73, 6lnopcoi 29434 . . . 4 (𝑆𝑇) ∈ LinOp
87lnopfi 29400 . . 3 (𝑆𝑇): ℋ⟶ ℋ
9 nmopre 29301 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
101, 9ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
11 nmopre 29301 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
124, 11ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
1310, 12remulcli 10393 . . . 4 ((normop𝑆) · (normop𝑇)) ∈ ℝ
1413rexri 10435 . . 3 ((normop𝑆) · (normop𝑇)) ∈ ℝ*
15 nmopub 29339 . . 3 (((𝑆𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) · (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))))
168, 14, 15mp2an 682 . 2 ((normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
17 0le0 11483 . . . . . . 7 0 ≤ 0
1817a1i 11 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → 0 ≤ 0)
193, 6lnopco0i 29435 . . . . . . . 8 ((normop𝑇) = 0 → (normop‘(𝑆𝑇)) = 0)
207nmlnop0iHIL 29427 . . . . . . . 8 ((normop‘(𝑆𝑇)) = 0 ↔ (𝑆𝑇) = 0hop )
2119, 20sylib 210 . . . . . . 7 ((normop𝑇) = 0 → (𝑆𝑇) = 0hop )
22 fveq1 6445 . . . . . . . . 9 ((𝑆𝑇) = 0hop → ((𝑆𝑇)‘𝑥) = ( 0hop𝑥))
2322fveq2d 6450 . . . . . . . 8 ((𝑆𝑇) = 0hop → (norm‘((𝑆𝑇)‘𝑥)) = (norm‘( 0hop𝑥)))
24 ho0val 29181 . . . . . . . . . 10 (𝑥 ∈ ℋ → ( 0hop𝑥) = 0)
2524fveq2d 6450 . . . . . . . . 9 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = (norm‘0))
26 norm0 28557 . . . . . . . . 9 (norm‘0) = 0
2725, 26syl6eq 2830 . . . . . . . 8 (𝑥 ∈ ℋ → (norm‘( 0hop𝑥)) = 0)
2823, 27sylan9eq 2834 . . . . . . 7 (((𝑆𝑇) = 0hop𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
2921, 28sylan 575 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) = 0)
30 oveq2 6930 . . . . . . . 8 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = ((normop𝑆) · 0))
3110recni 10391 . . . . . . . . 9 (normop𝑆) ∈ ℂ
3231mul01i 10566 . . . . . . . 8 ((normop𝑆) · 0) = 0
3330, 32syl6eq 2830 . . . . . . 7 ((normop𝑇) = 0 → ((normop𝑆) · (normop𝑇)) = 0)
3433adantr 474 . . . . . 6 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → ((normop𝑆) · (normop𝑇)) = 0)
3518, 29, 343brtr4d 4918 . . . . 5 (((normop𝑇) = 0 ∧ 𝑥 ∈ ℋ) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
3635adantrr 707 . . . 4 (((normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
37 df-ne 2970 . . . . 5 ((normop𝑇) ≠ 0 ↔ ¬ (normop𝑇) = 0)
388ffvelrni 6622 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) ∈ ℋ)
39 normcl 28554 . . . . . . . . . . . . . . 15 (((𝑆𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
4140recnd 10405 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ)
4212recni 10391 . . . . . . . . . . . . . 14 (normop𝑇) ∈ ℂ
43 divrec2 11050 . . . . . . . . . . . . . 14 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4442, 43mp3an2 1522 . . . . . . . . . . . . 13 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4541, 44sylan 575 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4645ancoms 452 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
4712rerecclzi 11139 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℝ)
48 bdopf 29293 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
494, 48ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑇: ℋ⟶ ℋ
50 nmopgt0 29343 . . . . . . . . . . . . . . . . 17 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇)))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . 16 ((normop𝑇) ≠ 0 ↔ 0 < (normop𝑇))
5212recgt0i 11282 . . . . . . . . . . . . . . . 16 (0 < (normop𝑇) → 0 < (1 / (normop𝑇)))
5351, 52sylbi 209 . . . . . . . . . . . . . . 15 ((normop𝑇) ≠ 0 → 0 < (1 / (normop𝑇)))
54 0re 10378 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
55 ltle 10465 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ (1 / (normop𝑇)) ∈ ℝ) → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5654, 55mpan 680 . . . . . . . . . . . . . . 15 ((1 / (normop𝑇)) ∈ ℝ → (0 < (1 / (normop𝑇)) → 0 ≤ (1 / (normop𝑇))))
5747, 53, 56sylc 65 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 ≤ (1 / (normop𝑇)))
5847, 57absidd 14569 . . . . . . . . . . . . 13 ((normop𝑇) ≠ 0 → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
5958adantr 474 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (abs‘(1 / (normop𝑇))) = (1 / (normop𝑇)))
6059oveq1d 6937 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))) = ((1 / (normop𝑇)) · (norm‘((𝑆𝑇)‘𝑥))))
6146, 60eqtr4d 2817 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6242recclzi 11100 . . . . . . . . . . 11 ((normop𝑇) ≠ 0 → (1 / (normop𝑇)) ∈ ℂ)
63 norm-iii 28569 . . . . . . . . . . 11 (((1 / (normop𝑇)) ∈ ℂ ∧ ((𝑆𝑇)‘𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6462, 38, 63syl2an 589 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘((𝑆𝑇)‘𝑥))))
6561, 64eqtr4d 2817 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
6649ffvelrni 6622 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
673lnopmuli 29403 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
6862, 66, 67syl2an 589 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
69 bdopf 29293 . . . . . . . . . . . . . . 15 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
701, 69ax-mp 5 . . . . . . . . . . . . . 14 𝑆: ℋ⟶ ℋ
7170, 49hocoi 29195 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
7271oveq2d 6938 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7372adantl 475 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)) = ((1 / (normop𝑇)) · (𝑆‘(𝑇𝑥))))
7468, 73eqtr4d 2817 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (𝑆‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥)))
7574fveq2d 6450 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) = (norm‘((1 / (normop𝑇)) · ((𝑆𝑇)‘𝑥))))
7665, 75eqtr4d 2817 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
7776adantrr 707 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) = (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))))
78 hvmulcl 28442 . . . . . . . . . 10 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
7962, 66, 78syl2an 589 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
8079adantrr 707 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ)
81 norm-iii 28569 . . . . . . . . . . . 12 (((1 / (normop𝑇)) ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
8262, 66, 81syl2an 589 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
83 normcl 28554 . . . . . . . . . . . . . . . 16 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8466, 83syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
8584recnd 10405 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℂ)
86 divrec2 11050 . . . . . . . . . . . . . . 15 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8742, 86mp3an2 1522 . . . . . . . . . . . . . 14 (((norm‘(𝑇𝑥)) ∈ ℂ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8885, 87sylan 575 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
8988ancoms 452 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9059oveq1d 6937 . . . . . . . . . . . 12 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))) = ((1 / (normop𝑇)) · (norm‘(𝑇𝑥))))
9189, 90eqtr4d 2817 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → ((norm‘(𝑇𝑥)) / (normop𝑇)) = ((abs‘(1 / (normop𝑇))) · (norm‘(𝑇𝑥))))
9282, 91eqtr4d 2817 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
9392adantrr 707 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) = ((norm‘(𝑇𝑥)) / (normop𝑇)))
94 nmoplb 29338 . . . . . . . . . . . . 13 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9549, 94mp3an1 1521 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
9642mulid2i 10382 . . . . . . . . . . . 12 (1 · (normop𝑇)) = (normop𝑇)
9795, 96syl6breqr 4928 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9897adantl 475 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇)))
9984adantr 474 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (norm‘(𝑇𝑥)) ∈ ℝ)
100 1red 10377 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 1 ∈ ℝ)
10112a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (normop𝑇) ∈ ℝ)
10251biimpi 208 . . . . . . . . . . . . . 14 ((normop𝑇) ≠ 0 → 0 < (normop𝑇))
103102adantl 475 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → 0 < (normop𝑇))
104 ledivmul2 11256 . . . . . . . . . . . . 13 (((norm‘(𝑇𝑥)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10599, 100, 101, 103, 104syl112anc 1442 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ (normop𝑇) ≠ 0) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
106105ancoms 452 . . . . . . . . . . 11 (((normop𝑇) ≠ 0 ∧ 𝑥 ∈ ℋ) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
107106adantrr 707 . . . . . . . . . 10 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1 ↔ (norm‘(𝑇𝑥)) ≤ (1 · (normop𝑇))))
10898, 107mpbird 249 . . . . . . . . 9 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘(𝑇𝑥)) / (normop𝑇)) ≤ 1)
10993, 108eqbrtrd 4908 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1)
110 nmoplb 29338 . . . . . . . . 9 ((𝑆: ℋ⟶ ℋ ∧ ((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11170, 110mp3an1 1521 . . . . . . . 8 ((((1 / (normop𝑇)) · (𝑇𝑥)) ∈ ℋ ∧ (norm‘((1 / (normop𝑇)) · (𝑇𝑥))) ≤ 1) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11280, 109, 111syl2anc 579 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘(𝑆‘((1 / (normop𝑇)) · (𝑇𝑥)))) ≤ (normop𝑆))
11377, 112eqbrtrd 4908 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆))
11440ad2antrl 718 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ)
11510a1i 11 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (normop𝑆) ∈ ℝ)
116102adantr 474 . . . . . . . 8 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → 0 < (normop𝑇))
117116, 12jctil 515 . . . . . . 7 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇)))
118 ledivmul2 11256 . . . . . . 7 (((norm‘((𝑆𝑇)‘𝑥)) ∈ ℝ ∧ (normop𝑆) ∈ ℝ ∧ ((normop𝑇) ∈ ℝ ∧ 0 < (normop𝑇))) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
119114, 115, 117, 118syl3anc 1439 . . . . . 6 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (((norm‘((𝑆𝑇)‘𝑥)) / (normop𝑇)) ≤ (normop𝑆) ↔ (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
120113, 119mpbid 224 . . . . 5 (((normop𝑇) ≠ 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12137, 120sylanbr 577 . . . 4 ((¬ (normop𝑇) = 0 ∧ (𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1)) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
12236, 121pm2.61ian 802 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇)))
123122ex 403 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆𝑇)‘𝑥)) ≤ ((normop𝑆) · (normop𝑇))))
12416, 123mprgbir 3109 1 (normop‘(𝑆𝑇)) ≤ ((normop𝑆) · (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090   class class class wbr 4886  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   · cmul 10277  *cxr 10410   < clt 10411  cle 10412   / cdiv 11032  abscabs 14381  chba 28348   · csm 28350  normcno 28352  0c0v 28353   0hop ch0o 28372  normopcnop 28374  LinOpclo 28376  BndLinOpcbo 28377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cc 9592  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352  ax-hilex 28428  ax-hfvadd 28429  ax-hvcom 28430  ax-hvass 28431  ax-hv0cl 28432  ax-hvaddid 28433  ax-hfvmul 28434  ax-hvmulid 28435  ax-hvmulass 28436  ax-hvdistr1 28437  ax-hvdistr2 28438  ax-hvmul0 28439  ax-hfi 28508  ax-his1 28511  ax-his2 28512  ax-his3 28513  ax-his4 28514  ax-hcompl 28631
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-lm 21441  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cfil 23461  df-cau 23462  df-cmet 23463  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ims 28028  df-dip 28128  df-ssp 28149  df-lno 28171  df-nmoo 28172  df-0o 28174  df-ph 28240  df-cbn 28291  df-hnorm 28397  df-hba 28398  df-hvsub 28400  df-hlim 28401  df-hcau 28402  df-sh 28636  df-ch 28650  df-oc 28681  df-ch0 28682  df-shs 28739  df-pjh 28826  df-h0op 29179  df-nmop 29270  df-lnop 29272  df-bdop 29273  df-hmop 29275
This theorem is referenced by:  bdopcoi  29529  unierri  29535
  Copyright terms: Public domain W3C validator