![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdophmi | Structured version Visualization version GIF version |
Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmophm.1 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
bdophmi | ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmophm.1 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
2 | bdopln 31895 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopmi 32034 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) |
5 | 1 | nmophmi 32065 | . . 3 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) |
6 | abscl 15329 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
7 | nmopre 31904 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
9 | remulcl 11271 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (normop‘𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) | |
10 | 6, 8, 9 | sylancl 585 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) |
11 | 5, 10 | eqeltrd 2844 | . 2 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ) |
12 | elbdop2 31905 | . 2 ⊢ ((𝐴 ·op 𝑇) ∈ BndLinOp ↔ ((𝐴 ·op 𝑇) ∈ LinOp ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)) | |
13 | 4, 11, 12 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 ℂcc 11184 ℝcr 11185 · cmul 11191 abscabs 15285 ·op chot 30973 normopcnop 30979 LinOpclo 30981 BndLinOpcbo 30982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-hilex 31033 ax-hfvadd 31034 ax-hvcom 31035 ax-hvass 31036 ax-hv0cl 31037 ax-hvaddid 31038 ax-hfvmul 31039 ax-hvmulid 31040 ax-hvmulass 31041 ax-hvdistr1 31042 ax-hvdistr2 31043 ax-hvmul0 31044 ax-hfi 31113 ax-his1 31116 ax-his2 31117 ax-his3 31118 ax-his4 31119 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-seq 14055 df-exp 14115 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-grpo 30527 df-gid 30528 df-ablo 30579 df-vc 30593 df-nv 30626 df-va 30629 df-ba 30630 df-sm 30631 df-0v 30632 df-nmcv 30634 df-hnorm 31002 df-hba 31003 df-hvsub 31005 df-homul 31765 df-nmop 31873 df-lnop 31875 df-bdop 31876 |
This theorem is referenced by: bdophdi 32131 nmoptri2i 32133 |
Copyright terms: Public domain | W3C validator |