| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bdophmi | Structured version Visualization version GIF version | ||
| Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmophm.1 | ⊢ 𝑇 ∈ BndLinOp |
| Ref | Expression |
|---|---|
| bdophmi | ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmophm.1 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
| 2 | bdopln 31807 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
| 4 | 3 | lnopmi 31946 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) |
| 5 | 1 | nmophmi 31977 | . . 3 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) |
| 6 | abscl 15298 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 7 | nmopre 31816 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
| 8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
| 9 | remulcl 11221 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (normop‘𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) | |
| 10 | 6, 8, 9 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) |
| 11 | 5, 10 | eqeltrd 2833 | . 2 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ) |
| 12 | elbdop2 31817 | . 2 ⊢ ((𝐴 ·op 𝑇) ∈ BndLinOp ↔ ((𝐴 ·op 𝑇) ∈ LinOp ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)) | |
| 13 | 4, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7412 ℂcc 11134 ℝcr 11135 · cmul 11141 abscabs 15254 ·op chot 30885 normopcnop 30891 LinOpclo 30893 BndLinOpcbo 30894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-hilex 30945 ax-hfvadd 30946 ax-hvcom 30947 ax-hvass 30948 ax-hv0cl 30949 ax-hvaddid 30950 ax-hfvmul 30951 ax-hvmulid 30952 ax-hvmulass 30953 ax-hvdistr1 30954 ax-hvdistr2 30955 ax-hvmul0 30956 ax-hfi 31025 ax-his1 31028 ax-his2 31029 ax-his3 31030 ax-his4 31031 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-seq 14024 df-exp 14084 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-grpo 30439 df-gid 30440 df-ablo 30491 df-vc 30505 df-nv 30538 df-va 30541 df-ba 30542 df-sm 30543 df-0v 30544 df-nmcv 30546 df-hnorm 30914 df-hba 30915 df-hvsub 30917 df-homul 31677 df-nmop 31785 df-lnop 31787 df-bdop 31788 |
| This theorem is referenced by: bdophdi 32043 nmoptri2i 32045 |
| Copyright terms: Public domain | W3C validator |