HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdophmi Structured version   Visualization version   GIF version

Theorem bdophmi 29813
Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmophm.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
bdophmi (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp)

Proof of Theorem bdophmi
StepHypRef Expression
1 nmophm.1 . . . 4 𝑇 ∈ BndLinOp
2 bdopln 29642 . . . 4 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑇 ∈ LinOp
43lnopmi 29781 . 2 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)
51nmophmi 29812 . . 3 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop𝑇)))
6 abscl 14629 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
7 nmopre 29651 . . . . 5 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
81, 7ax-mp 5 . . . 4 (normop𝑇) ∈ ℝ
9 remulcl 10611 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ (normop𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
106, 8, 9sylancl 589 . . 3 (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop𝑇)) ∈ ℝ)
115, 10eqeltrd 2914 . 2 (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)
12 elbdop2 29652 . 2 ((𝐴 ·op 𝑇) ∈ BndLinOp ↔ ((𝐴 ·op 𝑇) ∈ LinOp ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ))
134, 11, 12sylanbrc 586 1 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  cfv 6334  (class class class)co 7140  cc 10524  cr 10525   · cmul 10531  abscabs 14584   ·op chot 28720  normopcnop 28726  LinOpclo 28728  BndLinOpcbo 28729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28780  ax-hfvadd 28781  ax-hvcom 28782  ax-hvass 28783  ax-hv0cl 28784  ax-hvaddid 28785  ax-hfvmul 28786  ax-hvmulid 28787  ax-hvmulass 28788  ax-hvdistr1 28789  ax-hvdistr2 28790  ax-hvmul0 28791  ax-hfi 28860  ax-his1 28863  ax-his2 28864  ax-his3 28865  ax-his4 28866
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-grpo 28274  df-gid 28275  df-ablo 28326  df-vc 28340  df-nv 28373  df-va 28376  df-ba 28377  df-sm 28378  df-0v 28379  df-nmcv 28381  df-hnorm 28749  df-hba 28750  df-hvsub 28752  df-homul 29512  df-nmop 29620  df-lnop 29622  df-bdop 29623
This theorem is referenced by:  bdophdi  29878  nmoptri2i  29880
  Copyright terms: Public domain W3C validator