| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bdophmi | Structured version Visualization version GIF version | ||
| Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmophm.1 | ⊢ 𝑇 ∈ BndLinOp |
| Ref | Expression |
|---|---|
| bdophmi | ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmophm.1 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
| 2 | bdopln 31797 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
| 4 | 3 | lnopmi 31936 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) |
| 5 | 1 | nmophmi 31967 | . . 3 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) |
| 6 | abscl 15254 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 7 | nmopre 31806 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
| 8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
| 9 | remulcl 11171 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (normop‘𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) | |
| 10 | 6, 8, 9 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) |
| 11 | 5, 10 | eqeltrd 2829 | . 2 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ) |
| 12 | elbdop2 31807 | . 2 ⊢ ((𝐴 ·op 𝑇) ∈ BndLinOp ↔ ((𝐴 ·op 𝑇) ∈ LinOp ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)) | |
| 13 | 4, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 ℝcr 11085 · cmul 11091 abscabs 15210 ·op chot 30875 normopcnop 30881 LinOpclo 30883 BndLinOpcbo 30884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-grpo 30429 df-gid 30430 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 df-hnorm 30904 df-hba 30905 df-hvsub 30907 df-homul 31667 df-nmop 31775 df-lnop 31777 df-bdop 31778 |
| This theorem is referenced by: bdophdi 32033 nmoptri2i 32035 |
| Copyright terms: Public domain | W3C validator |