![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdophmi | Structured version Visualization version GIF version |
Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmophm.1 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
bdophmi | ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmophm.1 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
2 | bdopln 31903 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
4 | 3 | lnopmi 32042 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) |
5 | 1 | nmophmi 32073 | . . 3 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) |
6 | abscl 15320 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
7 | nmopre 31912 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
9 | remulcl 11244 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (normop‘𝑇) ∈ ℝ) → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) | |
10 | 6, 8, 9 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) · (normop‘𝑇)) ∈ ℝ) |
11 | 5, 10 | eqeltrd 2840 | . 2 ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) ∈ ℝ) |
12 | elbdop2 31913 | . 2 ⊢ ((𝐴 ·op 𝑇) ∈ BndLinOp ↔ ((𝐴 ·op 𝑇) ∈ LinOp ∧ (normop‘(𝐴 ·op 𝑇)) ∈ ℝ)) | |
13 | 4, 11, 12 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6566 (class class class)co 7435 ℂcc 11157 ℝcr 11158 · cmul 11164 abscabs 15276 ·op chot 30981 normopcnop 30987 LinOpclo 30989 BndLinOpcbo 30990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-hilex 31041 ax-hfvadd 31042 ax-hvcom 31043 ax-hvass 31044 ax-hv0cl 31045 ax-hvaddid 31046 ax-hfvmul 31047 ax-hvmulid 31048 ax-hvmulass 31049 ax-hvdistr1 31050 ax-hvdistr2 31051 ax-hvmul0 31052 ax-hfi 31121 ax-his1 31124 ax-his2 31125 ax-his3 31126 ax-his4 31127 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-grpo 30535 df-gid 30536 df-ablo 30587 df-vc 30601 df-nv 30634 df-va 30637 df-ba 30638 df-sm 30639 df-0v 30640 df-nmcv 30642 df-hnorm 31010 df-hba 31011 df-hvsub 31013 df-homul 31773 df-nmop 31881 df-lnop 31883 df-bdop 31884 |
This theorem is referenced by: bdophdi 32139 nmoptri2i 32141 |
Copyright terms: Public domain | W3C validator |