HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdophsi Structured version   Visualization version   GIF version

Theorem bdophsi 30458
Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
bdophsi (𝑆 +op 𝑇) ∈ BndLinOp

Proof of Theorem bdophsi
StepHypRef Expression
1 nmoptri.1 . . . 4 𝑆 ∈ BndLinOp
2 bdopln 30223 . . . 4 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑆 ∈ LinOp
4 nmoptri.2 . . . 4 𝑇 ∈ BndLinOp
5 bdopln 30223 . . . 4 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . 3 𝑇 ∈ LinOp
73, 6lnophsi 30363 . 2 (𝑆 +op 𝑇) ∈ LinOp
8 bdopf 30224 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
91, 8ax-mp 5 . . . . 5 𝑆: ℋ⟶ ℋ
10 bdopf 30224 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
114, 10ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
129, 11hoaddcli 30130 . . . 4 (𝑆 +op 𝑇): ℋ⟶ ℋ
13 nmopxr 30228 . . . 4 ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*)
1412, 13ax-mp 5 . . 3 (normop‘(𝑆 +op 𝑇)) ∈ ℝ*
15 nmopre 30232 . . . . 5 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
161, 15ax-mp 5 . . . 4 (normop𝑆) ∈ ℝ
17 nmopre 30232 . . . . 5 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
184, 17ax-mp 5 . . . 4 (normop𝑇) ∈ ℝ
1916, 18readdcli 10990 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ
20 nmopgtmnf 30230 . . . 4 ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇)))
2112, 20ax-mp 5 . . 3 -∞ < (normop‘(𝑆 +op 𝑇))
221, 4nmoptrii 30456 . . 3 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
23 xrre 12903 . . 3 ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ)
2414, 19, 21, 22, 23mp4an 690 . 2 (normop‘(𝑆 +op 𝑇)) ∈ ℝ
25 elbdop2 30233 . 2 ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ))
267, 24, 25mpbir2an 708 1 (𝑆 +op 𝑇) ∈ BndLinOp
Colors of variables: wff setvar class
Syntax hints:  wcel 2106   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cr 10870   + caddc 10874  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  chba 29281   +op chos 29300  normopcnop 29307  LinOpclo 29309  BndLinOpcbo 29310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-grpo 28855  df-gid 28856  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hosum 30092  df-nmop 30201  df-lnop 30203  df-bdop 30204
This theorem is referenced by:  bdophdi  30459  nmoptri2i  30461  unierri  30466
  Copyright terms: Public domain W3C validator