![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdophsi | Structured version Visualization version GIF version |
Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
bdophsi | ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.1 | . . . 4 ⊢ 𝑆 ∈ BndLinOp | |
2 | bdopln 29419 | . . . 4 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑆 ∈ LinOp |
4 | nmoptri.2 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
5 | bdopln 29419 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
7 | 3, 6 | lnophsi 29559 | . 2 ⊢ (𝑆 +op 𝑇) ∈ LinOp |
8 | bdopf 29420 | . . . . . 6 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ 𝑆: ℋ⟶ ℋ |
10 | bdopf 29420 | . . . . . 6 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
11 | 4, 10 | ax-mp 5 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ |
12 | 9, 11 | hoaddcli 29326 | . . . 4 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
13 | nmopxr 29424 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ* |
15 | nmopre 29428 | . . . . 5 ⊢ (𝑆 ∈ BndLinOp → (normop‘𝑆) ∈ ℝ) | |
16 | 1, 15 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑆) ∈ ℝ |
17 | nmopre 29428 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
18 | 4, 17 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
19 | 16, 18 | readdcli 10455 | . . 3 ⊢ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ |
20 | nmopgtmnf 29426 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇))) | |
21 | 12, 20 | ax-mp 5 | . . 3 ⊢ -∞ < (normop‘(𝑆 +op 𝑇)) |
22 | 1, 4 | nmoptrii 29652 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)) |
23 | xrre 12379 | . . 3 ⊢ ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ) | |
24 | 14, 19, 21, 22, 23 | mp4an 680 | . 2 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ |
25 | elbdop2 29429 | . 2 ⊢ ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ)) | |
26 | 7, 24, 25 | mpbir2an 698 | 1 ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 class class class wbr 4929 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 ℝcr 10334 + caddc 10338 -∞cmnf 10472 ℝ*cxr 10473 < clt 10474 ≤ cle 10475 ℋchba 28475 +op chos 28494 normopcnop 28501 LinOpclo 28503 BndLinOpcbo 28504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-hilex 28555 ax-hfvadd 28556 ax-hvcom 28557 ax-hvass 28558 ax-hv0cl 28559 ax-hvaddid 28560 ax-hfvmul 28561 ax-hvmulid 28562 ax-hvmulass 28563 ax-hvdistr1 28564 ax-hvdistr2 28565 ax-hvmul0 28566 ax-hfi 28635 ax-his1 28638 ax-his2 28639 ax-his3 28640 ax-his4 28641 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-sup 8701 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-grpo 28047 df-gid 28048 df-ablo 28099 df-vc 28113 df-nv 28146 df-va 28149 df-ba 28150 df-sm 28151 df-0v 28152 df-nmcv 28154 df-hnorm 28524 df-hba 28525 df-hvsub 28527 df-hosum 29288 df-nmop 29397 df-lnop 29399 df-bdop 29400 |
This theorem is referenced by: bdophdi 29655 nmoptri2i 29657 unierri 29662 |
Copyright terms: Public domain | W3C validator |