![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdophsi | Structured version Visualization version GIF version |
Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
bdophsi | ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.1 | . . . 4 ⊢ 𝑆 ∈ BndLinOp | |
2 | bdopln 31109 | . . . 4 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑆 ∈ LinOp |
4 | nmoptri.2 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
5 | bdopln 31109 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
7 | 3, 6 | lnophsi 31249 | . 2 ⊢ (𝑆 +op 𝑇) ∈ LinOp |
8 | bdopf 31110 | . . . . . 6 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ 𝑆: ℋ⟶ ℋ |
10 | bdopf 31110 | . . . . . 6 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
11 | 4, 10 | ax-mp 5 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ |
12 | 9, 11 | hoaddcli 31016 | . . . 4 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
13 | nmopxr 31114 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ* |
15 | nmopre 31118 | . . . . 5 ⊢ (𝑆 ∈ BndLinOp → (normop‘𝑆) ∈ ℝ) | |
16 | 1, 15 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑆) ∈ ℝ |
17 | nmopre 31118 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
18 | 4, 17 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
19 | 16, 18 | readdcli 11228 | . . 3 ⊢ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ |
20 | nmopgtmnf 31116 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇))) | |
21 | 12, 20 | ax-mp 5 | . . 3 ⊢ -∞ < (normop‘(𝑆 +op 𝑇)) |
22 | 1, 4 | nmoptrii 31342 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)) |
23 | xrre 13147 | . . 3 ⊢ ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ) | |
24 | 14, 19, 21, 22, 23 | mp4an 691 | . 2 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ |
25 | elbdop2 31119 | . 2 ⊢ ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ)) | |
26 | 7, 24, 25 | mpbir2an 709 | 1 ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 + caddc 11112 -∞cmnf 11245 ℝ*cxr 11246 < clt 11247 ≤ cle 11248 ℋchba 30167 +op chos 30186 normopcnop 30193 LinOpclo 30195 BndLinOpcbo 30196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-hilex 30247 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvmulass 30255 ax-hvdistr1 30256 ax-hvdistr2 30257 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his2 30331 ax-his3 30332 ax-his4 30333 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-grpo 29741 df-gid 29742 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-nmcv 29848 df-hnorm 30216 df-hba 30217 df-hvsub 30219 df-hosum 30978 df-nmop 31087 df-lnop 31089 df-bdop 31090 |
This theorem is referenced by: bdophdi 31345 nmoptri2i 31347 unierri 31352 |
Copyright terms: Public domain | W3C validator |