| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bdophsi | Structured version Visualization version GIF version | ||
| Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
| nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
| Ref | Expression |
|---|---|
| bdophsi | ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoptri.1 | . . . 4 ⊢ 𝑆 ∈ BndLinOp | |
| 2 | bdopln 31839 | . . . 4 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑆 ∈ LinOp |
| 4 | nmoptri.2 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
| 5 | bdopln 31839 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
| 7 | 3, 6 | lnophsi 31979 | . 2 ⊢ (𝑆 +op 𝑇) ∈ LinOp |
| 8 | bdopf 31840 | . . . . . 6 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
| 9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ 𝑆: ℋ⟶ ℋ |
| 10 | bdopf 31840 | . . . . . 6 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
| 11 | 4, 10 | ax-mp 5 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ |
| 12 | 9, 11 | hoaddcli 31746 | . . . 4 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
| 13 | nmopxr 31844 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ* |
| 15 | nmopre 31848 | . . . . 5 ⊢ (𝑆 ∈ BndLinOp → (normop‘𝑆) ∈ ℝ) | |
| 16 | 1, 15 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑆) ∈ ℝ |
| 17 | nmopre 31848 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
| 18 | 4, 17 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
| 19 | 16, 18 | readdcli 11127 | . . 3 ⊢ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ |
| 20 | nmopgtmnf 31846 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇))) | |
| 21 | 12, 20 | ax-mp 5 | . . 3 ⊢ -∞ < (normop‘(𝑆 +op 𝑇)) |
| 22 | 1, 4 | nmoptrii 32072 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)) |
| 23 | xrre 13068 | . . 3 ⊢ ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ) | |
| 24 | 14, 19, 21, 22, 23 | mp4an 693 | . 2 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ |
| 25 | elbdop2 31849 | . 2 ⊢ ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ)) | |
| 26 | 7, 24, 25 | mpbir2an 711 | 1 ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 + caddc 11009 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 ℋchba 30897 +op chos 30916 normopcnop 30923 LinOpclo 30925 BndLinOpcbo 30926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-hilex 30977 ax-hfvadd 30978 ax-hvcom 30979 ax-hvass 30980 ax-hv0cl 30981 ax-hvaddid 30982 ax-hfvmul 30983 ax-hvmulid 30984 ax-hvmulass 30985 ax-hvdistr1 30986 ax-hvdistr2 30987 ax-hvmul0 30988 ax-hfi 31057 ax-his1 31060 ax-his2 31061 ax-his3 31062 ax-his4 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30471 df-gid 30472 df-ablo 30523 df-vc 30537 df-nv 30570 df-va 30573 df-ba 30574 df-sm 30575 df-0v 30576 df-nmcv 30578 df-hnorm 30946 df-hba 30947 df-hvsub 30949 df-hosum 31708 df-nmop 31817 df-lnop 31819 df-bdop 31820 |
| This theorem is referenced by: bdophdi 32075 nmoptri2i 32077 unierri 32082 |
| Copyright terms: Public domain | W3C validator |