HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdophsi Structured version   Visualization version   GIF version

Theorem bdophsi 32074
Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
bdophsi (𝑆 +op 𝑇) ∈ BndLinOp

Proof of Theorem bdophsi
StepHypRef Expression
1 nmoptri.1 . . . 4 𝑆 ∈ BndLinOp
2 bdopln 31839 . . . 4 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑆 ∈ LinOp
4 nmoptri.2 . . . 4 𝑇 ∈ BndLinOp
5 bdopln 31839 . . . 4 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
64, 5ax-mp 5 . . 3 𝑇 ∈ LinOp
73, 6lnophsi 31979 . 2 (𝑆 +op 𝑇) ∈ LinOp
8 bdopf 31840 . . . . . 6 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
91, 8ax-mp 5 . . . . 5 𝑆: ℋ⟶ ℋ
10 bdopf 31840 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
114, 10ax-mp 5 . . . . 5 𝑇: ℋ⟶ ℋ
129, 11hoaddcli 31746 . . . 4 (𝑆 +op 𝑇): ℋ⟶ ℋ
13 nmopxr 31844 . . . 4 ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*)
1412, 13ax-mp 5 . . 3 (normop‘(𝑆 +op 𝑇)) ∈ ℝ*
15 nmopre 31848 . . . . 5 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
161, 15ax-mp 5 . . . 4 (normop𝑆) ∈ ℝ
17 nmopre 31848 . . . . 5 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
184, 17ax-mp 5 . . . 4 (normop𝑇) ∈ ℝ
1916, 18readdcli 11127 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ
20 nmopgtmnf 31846 . . . 4 ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇)))
2112, 20ax-mp 5 . . 3 -∞ < (normop‘(𝑆 +op 𝑇))
221, 4nmoptrii 32072 . . 3 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
23 xrre 13068 . . 3 ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ)
2414, 19, 21, 22, 23mp4an 693 . 2 (normop‘(𝑆 +op 𝑇)) ∈ ℝ
25 elbdop2 31849 . 2 ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ))
267, 24, 25mpbir2an 711 1 (𝑆 +op 𝑇) ∈ BndLinOp
Colors of variables: wff setvar class
Syntax hints:  wcel 2111   class class class wbr 5091  wf 6477  cfv 6481  (class class class)co 7346  cr 11005   + caddc 11009  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  chba 30897   +op chos 30916  normopcnop 30923  LinOpclo 30925  BndLinOpcbo 30926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hilex 30977  ax-hfvadd 30978  ax-hvcom 30979  ax-hvass 30980  ax-hv0cl 30981  ax-hvaddid 30982  ax-hfvmul 30983  ax-hvmulid 30984  ax-hvmulass 30985  ax-hvdistr1 30986  ax-hvdistr2 30987  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30471  df-gid 30472  df-ablo 30523  df-vc 30537  df-nv 30570  df-va 30573  df-ba 30574  df-sm 30575  df-0v 30576  df-nmcv 30578  df-hnorm 30946  df-hba 30947  df-hvsub 30949  df-hosum 31708  df-nmop 31817  df-lnop 31819  df-bdop 31820
This theorem is referenced by:  bdophdi  32075  nmoptri2i  32077  unierri  32082
  Copyright terms: Public domain W3C validator