![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdophsi | Structured version Visualization version GIF version |
Description: The sum of two bounded linear operators is a bounded linear operator. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | ⊢ 𝑆 ∈ BndLinOp |
nmoptri.2 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
bdophsi | ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.1 | . . . 4 ⊢ 𝑆 ∈ BndLinOp | |
2 | bdopln 31890 | . . . 4 ⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝑆 ∈ LinOp |
4 | nmoptri.2 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
5 | bdopln 31890 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 𝑇 ∈ LinOp |
7 | 3, 6 | lnophsi 32030 | . 2 ⊢ (𝑆 +op 𝑇) ∈ LinOp |
8 | bdopf 31891 | . . . . . 6 ⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ) | |
9 | 1, 8 | ax-mp 5 | . . . . 5 ⊢ 𝑆: ℋ⟶ ℋ |
10 | bdopf 31891 | . . . . . 6 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
11 | 4, 10 | ax-mp 5 | . . . . 5 ⊢ 𝑇: ℋ⟶ ℋ |
12 | 9, 11 | hoaddcli 31797 | . . . 4 ⊢ (𝑆 +op 𝑇): ℋ⟶ ℋ |
13 | nmopxr 31895 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → (normop‘(𝑆 +op 𝑇)) ∈ ℝ*) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ* |
15 | nmopre 31899 | . . . . 5 ⊢ (𝑆 ∈ BndLinOp → (normop‘𝑆) ∈ ℝ) | |
16 | 1, 15 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑆) ∈ ℝ |
17 | nmopre 31899 | . . . . 5 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
18 | 4, 17 | ax-mp 5 | . . . 4 ⊢ (normop‘𝑇) ∈ ℝ |
19 | 16, 18 | readdcli 11274 | . . 3 ⊢ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ |
20 | nmopgtmnf 31897 | . . . 4 ⊢ ((𝑆 +op 𝑇): ℋ⟶ ℋ → -∞ < (normop‘(𝑆 +op 𝑇))) | |
21 | 12, 20 | ax-mp 5 | . . 3 ⊢ -∞ < (normop‘(𝑆 +op 𝑇)) |
22 | 1, 4 | nmoptrii 32123 | . . 3 ⊢ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)) |
23 | xrre 13208 | . . 3 ⊢ ((((normop‘(𝑆 +op 𝑇)) ∈ ℝ* ∧ ((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ) ∧ (-∞ < (normop‘(𝑆 +op 𝑇)) ∧ (normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) + (normop‘𝑇)))) → (normop‘(𝑆 +op 𝑇)) ∈ ℝ) | |
24 | 14, 19, 21, 22, 23 | mp4an 693 | . 2 ⊢ (normop‘(𝑆 +op 𝑇)) ∈ ℝ |
25 | elbdop2 31900 | . 2 ⊢ ((𝑆 +op 𝑇) ∈ BndLinOp ↔ ((𝑆 +op 𝑇) ∈ LinOp ∧ (normop‘(𝑆 +op 𝑇)) ∈ ℝ)) | |
26 | 7, 24, 25 | mpbir2an 711 | 1 ⊢ (𝑆 +op 𝑇) ∈ BndLinOp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 + caddc 11156 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 ℋchba 30948 +op chos 30967 normopcnop 30974 LinOpclo 30976 BndLinOpcbo 30977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his2 31112 ax-his3 31113 ax-his4 31114 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-grpo 30522 df-gid 30523 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 df-hnorm 30997 df-hba 30998 df-hvsub 31000 df-hosum 31759 df-nmop 31868 df-lnop 31870 df-bdop 31871 |
This theorem is referenced by: bdophdi 32126 nmoptri2i 32128 unierri 32133 |
Copyright terms: Public domain | W3C validator |