| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bdopf | Structured version Visualization version GIF version | ||
| Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bdopf | ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdopln 31776 | . 2 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
| 2 | lnopf 31774 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⟶wf 6524 ℋchba 30834 LinOpclo 30862 BndLinOpcbo 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-hilex 30914 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-map 8837 df-lnop 31756 df-bdop 31757 |
| This theorem is referenced by: nmopre 31785 nmophmi 31946 adjbdln 31998 nmopadjlem 32004 nmoptrii 32009 nmopcoi 32010 bdophsi 32011 bdophdi 32012 nmoptri2i 32014 adjcoi 32015 nmopcoadji 32016 unierri 32019 |
| Copyright terms: Public domain | W3C validator |