| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > bdopf | Structured version Visualization version GIF version | ||
| Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bdopf | ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdopln 31841 | . 2 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
| 2 | lnopf 31839 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⟶wf 6477 ℋchba 30899 LinOpclo 30927 BndLinOpcbo 30928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-lnop 31821 df-bdop 31822 |
| This theorem is referenced by: nmopre 31850 nmophmi 32011 adjbdln 32063 nmopadjlem 32069 nmoptrii 32074 nmopcoi 32075 bdophsi 32076 bdophdi 32077 nmoptri2i 32079 adjcoi 32080 nmopcoadji 32081 unierri 32084 |
| Copyright terms: Public domain | W3C validator |