HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdopf Structured version   Visualization version   GIF version

Theorem bdopf 31797
Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bdopf (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem bdopf
StepHypRef Expression
1 bdopln 31796 . 2 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
2 lnopf 31794 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 1 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wf 6509  chba 30854  LinOpclo 30882  BndLinOpcbo 30883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-hilex 30934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803  df-lnop 31776  df-bdop 31777
This theorem is referenced by:  nmopre  31805  nmophmi  31966  adjbdln  32018  nmopadjlem  32024  nmoptrii  32029  nmopcoi  32030  bdophsi  32031  bdophdi  32032  nmoptri2i  32034  adjcoi  32035  nmopcoadji  32036  unierri  32039
  Copyright terms: Public domain W3C validator