![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdopf | Structured version Visualization version GIF version |
Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdopf | ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdopln 31870 | . 2 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
2 | lnopf 31868 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⟶wf 6555 ℋchba 30928 LinOpclo 30956 BndLinOpcbo 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-hilex 31008 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-map 8864 df-lnop 31850 df-bdop 31851 |
This theorem is referenced by: nmopre 31879 nmophmi 32040 adjbdln 32092 nmopadjlem 32098 nmoptrii 32103 nmopcoi 32104 bdophsi 32105 bdophdi 32106 nmoptri2i 32108 adjcoi 32109 nmopcoadji 32110 unierri 32113 |
Copyright terms: Public domain | W3C validator |