HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdopf Structured version   Visualization version   GIF version

Theorem bdopf 31806
Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bdopf (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem bdopf
StepHypRef Expression
1 bdopln 31805 . 2 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
2 lnopf 31803 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 1 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wf 6478  chba 30863  LinOpclo 30891  BndLinOpcbo 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-lnop 31785  df-bdop 31786
This theorem is referenced by:  nmopre  31814  nmophmi  31975  adjbdln  32027  nmopadjlem  32033  nmoptrii  32038  nmopcoi  32039  bdophsi  32040  bdophdi  32041  nmoptri2i  32043  adjcoi  32044  nmopcoadji  32045  unierri  32048
  Copyright terms: Public domain W3C validator