![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdopf | Structured version Visualization version GIF version |
Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdopf | ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdopln 31871 | . 2 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | |
2 | lnopf 31869 | . 2 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⟶wf 6554 ℋchba 30929 LinOpclo 30957 BndLinOpcbo 30958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-hilex 31009 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-fv 6566 df-ov 7428 df-oprab 7429 df-mpo 7430 df-map 8861 df-lnop 31851 df-bdop 31852 |
This theorem is referenced by: nmopre 31880 nmophmi 32041 adjbdln 32093 nmopadjlem 32099 nmoptrii 32104 nmopcoi 32105 bdophsi 32106 bdophdi 32107 nmoptri2i 32109 adjcoi 32110 nmopcoadji 32111 unierri 32114 |
Copyright terms: Public domain | W3C validator |