HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bdopf Structured version   Visualization version   GIF version

Theorem bdopf 31102
Description: A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
bdopf (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem bdopf
StepHypRef Expression
1 bdopln 31101 . 2 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
2 lnopf 31099 . 2 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 1 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wf 6536  chba 30159  LinOpclo 30187  BndLinOpcbo 30188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-hilex 30239
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-lnop 31081  df-bdop 31082
This theorem is referenced by:  nmopre  31110  nmophmi  31271  adjbdln  31323  nmopadjlem  31329  nmoptrii  31334  nmopcoi  31335  bdophsi  31336  bdophdi  31337  nmoptri2i  31339  adjcoi  31340  nmopcoadji  31341  unierri  31344
  Copyright terms: Public domain W3C validator