| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bncmet | Structured version Visualization version GIF version | ||
| Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
| iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| bncmet | ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bncms 25250 | . 2 ⊢ (𝑀 ∈ Ban → 𝑀 ∈ CMetSp) | |
| 2 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
| 3 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 4 | 2, 3 | cmscmet 25252 | . 2 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5638 ↾ cres 5642 ‘cfv 6513 Basecbs 17185 distcds 17235 CMetccmet 25160 CMetSpccms 25238 Bancbn 25239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-res 5652 df-iota 6466 df-fv 6521 df-cms 25241 df-bn 25242 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |