|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bncmet | Structured version Visualization version GIF version | ||
| Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| iscms.1 | ⊢ 𝑋 = (Base‘𝑀) | 
| iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | 
| Ref | Expression | 
|---|---|
| bncmet | ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bncms 25379 | . 2 ⊢ (𝑀 ∈ Ban → 𝑀 ∈ CMetSp) | |
| 2 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
| 3 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 4 | 2, 3 | cmscmet 25381 | . 2 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) | 
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 × cxp 5682 ↾ cres 5686 ‘cfv 6560 Basecbs 17248 distcds 17307 CMetccmet 25289 CMetSpccms 25367 Bancbn 25368 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-res 5696 df-iota 6513 df-fv 6568 df-cms 25370 df-bn 25371 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |