Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bncmet | Structured version Visualization version GIF version |
Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
bncmet | ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bncms 24413 | . 2 ⊢ (𝑀 ∈ Ban → 𝑀 ∈ CMetSp) | |
2 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
3 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
4 | 2, 3 | cmscmet 24415 | . 2 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 × cxp 5578 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 distcds 16897 CMetccmet 24323 CMetSpccms 24401 Bancbn 24402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 df-iota 6376 df-fv 6426 df-cms 24404 df-bn 24405 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |