MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncmet Structured version   Visualization version   GIF version

Theorem bncmet 25400
Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
bncmet (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem bncmet
StepHypRef Expression
1 bncms 25397 . 2 (𝑀 ∈ Ban → 𝑀 ∈ CMetSp)
2 iscms.1 . . 3 𝑋 = (Base‘𝑀)
3 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
42, 3cmscmet 25399 . 2 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   × cxp 5698  cres 5702  cfv 6573  Basecbs 17258  distcds 17320  CMetccmet 25307  CMetSpccms 25385  Bancbn 25386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712  df-iota 6525  df-fv 6581  df-cms 25388  df-bn 25389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator