MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncmet Structured version   Visualization version   GIF version

Theorem bncmet 24416
Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
bncmet (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem bncmet
StepHypRef Expression
1 bncms 24413 . 2 (𝑀 ∈ Ban → 𝑀 ∈ CMetSp)
2 iscms.1 . . 3 𝑋 = (Base‘𝑀)
3 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
42, 3cmscmet 24415 . 2 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  distcds 16897  CMetccmet 24323  CMetSpccms 24401  Bancbn 24402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-cms 24404  df-bn 24405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator