MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncmet Structured version   Visualization version   GIF version

Theorem bncmet 25254
Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
bncmet (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem bncmet
StepHypRef Expression
1 bncms 25251 . 2 (𝑀 ∈ Ban → 𝑀 ∈ CMetSp)
2 iscms.1 . . 3 𝑋 = (Base‘𝑀)
3 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
42, 3cmscmet 25253 . 2 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5639  cres 5643  cfv 6514  Basecbs 17186  distcds 17236  CMetccmet 25161  CMetSpccms 25239  Bancbn 25240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-res 5653  df-iota 6467  df-fv 6522  df-cms 25242  df-bn 25243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator