MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncmet Structured version   Visualization version   GIF version

Theorem bncmet 25253
Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
bncmet (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem bncmet
StepHypRef Expression
1 bncms 25250 . 2 (𝑀 ∈ Ban → 𝑀 ∈ CMetSp)
2 iscms.1 . . 3 𝑋 = (Base‘𝑀)
3 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
42, 3cmscmet 25252 . 2 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑀 ∈ Ban → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5638  cres 5642  cfv 6513  Basecbs 17185  distcds 17235  CMetccmet 25160  CMetSpccms 25238  Bancbn 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-res 5652  df-iota 6466  df-fv 6521  df-cms 25241  df-bn 25242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator