MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmscmet Structured version   Visualization version   GIF version

Theorem cmscmet 25246
Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cmscmet (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cmscmet
StepHypRef Expression
1 iscms.1 . . 3 𝑋 = (Base‘𝑀)
2 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2iscms 25245 . 2 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 496 1 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   × cxp 5636  cres 5640  cfv 6511  Basecbs 17179  distcds 17229  MetSpcms 24206  CMetccmet 25154  CMetSpccms 25232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519  df-cms 25235
This theorem is referenced by:  bncmet  25247  cmsss  25251  cmetcusp1  25253  cmscsscms  25273  minveclem3a  25327
  Copyright terms: Public domain W3C validator