Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmscmet | Structured version Visualization version GIF version |
Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
cmscmet | ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
2 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
3 | 1, 2 | iscms 24616 | . 2 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
4 | 3 | simprbi 497 | 1 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 × cxp 5619 ↾ cres 5623 ‘cfv 6480 Basecbs 17010 distcds 17069 MetSpcms 23578 CMetccmet 24525 CMetSpccms 24603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5251 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-xp 5627 df-res 5633 df-iota 6432 df-fv 6488 df-cms 24606 |
This theorem is referenced by: bncmet 24618 cmsss 24622 cmetcusp1 24624 cmscsscms 24644 minveclem3a 24698 |
Copyright terms: Public domain | W3C validator |