MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmscmet Structured version   Visualization version   GIF version

Theorem cmscmet 24617
Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cmscmet (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cmscmet
StepHypRef Expression
1 iscms.1 . . 3 𝑋 = (Base‘𝑀)
2 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2iscms 24616 . 2 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 497 1 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   × cxp 5619  cres 5623  cfv 6480  Basecbs 17010  distcds 17069  MetSpcms 23578  CMetccmet 24525  CMetSpccms 24603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5251
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-xp 5627  df-res 5633  df-iota 6432  df-fv 6488  df-cms 24606
This theorem is referenced by:  bncmet  24618  cmsss  24622  cmetcusp1  24624  cmscsscms  24644  minveclem3a  24698
  Copyright terms: Public domain W3C validator