MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmscmet Structured version   Visualization version   GIF version

Theorem cmscmet 25271
Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
cmscmet (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))

Proof of Theorem cmscmet
StepHypRef Expression
1 iscms.1 . . 3 𝑋 = (Base‘𝑀)
2 iscms.2 . . 3 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
31, 2iscms 25270 . 2 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
43simprbi 496 1 (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   × cxp 5614  cres 5618  cfv 6481  Basecbs 17117  distcds 17167  MetSpcms 24231  CMetccmet 25179  CMetSpccms 25257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-res 5628  df-iota 6437  df-fv 6489  df-cms 25260
This theorem is referenced by:  bncmet  25272  cmsss  25276  cmetcusp1  25278  cmscsscms  25298  minveclem3a  25352
  Copyright terms: Public domain W3C validator