| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmscmet | Structured version Visualization version GIF version | ||
| Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
| iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| cmscmet | ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
| 2 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
| 3 | 1, 2 | iscms 25245 | . 2 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5636 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 distcds 17229 MetSpcms 24206 CMetccmet 25154 CMetSpccms 25232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 df-cms 25235 |
| This theorem is referenced by: bncmet 25247 cmsss 25251 cmetcusp1 25253 cmscsscms 25273 minveclem3a 25327 |
| Copyright terms: Public domain | W3C validator |