Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmsms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
cmsms | ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2736 | . . 3 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
3 | 1, 2 | iscms 24558 | . 2 ⊢ (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺)))) |
4 | 3 | simplbi 499 | 1 ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 × cxp 5598 ↾ cres 5602 ‘cfv 6458 Basecbs 16961 distcds 17020 MetSpcms 23520 CMetccmet 24467 CMetSpccms 24545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-res 5612 df-iota 6410 df-fv 6466 df-cms 24548 |
This theorem is referenced by: cmsss 24564 cmetcusp1 24566 rlmbn 24574 cmscsscms 24586 rrhcn 31996 dya2icoseg2 32294 sitgclbn 32359 |
Copyright terms: Public domain | W3C validator |