Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmsms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
cmsms | ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2739 | . . 3 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
3 | 1, 2 | iscms 24490 | . 2 ⊢ (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺)))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5586 ↾ cres 5590 ‘cfv 6430 Basecbs 16893 distcds 16952 MetSpcms 23452 CMetccmet 24399 CMetSpccms 24477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-res 5600 df-iota 6388 df-fv 6438 df-cms 24480 |
This theorem is referenced by: cmsss 24496 cmetcusp1 24498 rlmbn 24506 cmscsscms 24518 rrhcn 31926 dya2icoseg2 32224 sitgclbn 32289 |
Copyright terms: Public domain | W3C validator |