MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsms Structured version   Visualization version   GIF version

Theorem cmsms 24561
Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cmsms (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp)

Proof of Theorem cmsms
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2736 . . 3 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
31, 2iscms 24558 . 2 (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺))))
43simplbi 499 1 (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104   × cxp 5598  cres 5602  cfv 6458  Basecbs 16961  distcds 17020  MetSpcms 23520  CMetccmet 24467  CMetSpccms 24545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-xp 5606  df-res 5612  df-iota 6410  df-fv 6466  df-cms 24548
This theorem is referenced by:  cmsss  24564  cmetcusp1  24566  rlmbn  24574  cmscsscms  24586  rrhcn  31996  dya2icoseg2  32294  sitgclbn  32359
  Copyright terms: Public domain W3C validator