| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmsms | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmsms | ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
| 3 | 1, 2 | iscms 25261 | . 2 ⊢ (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺)))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5621 ↾ cres 5625 ‘cfv 6486 Basecbs 17138 distcds 17188 MetSpcms 24222 CMetccmet 25170 CMetSpccms 25248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-res 5635 df-iota 6442 df-fv 6494 df-cms 25251 |
| This theorem is referenced by: cmsss 25267 cmetcusp1 25269 rlmbn 25277 cmscsscms 25289 rrhcn 33963 dya2icoseg2 34245 sitgclbn 34310 |
| Copyright terms: Public domain | W3C validator |