MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsms Structured version   Visualization version   GIF version

Theorem cmsms 25276
Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cmsms (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp)

Proof of Theorem cmsms
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2731 . . 3 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
31, 2iscms 25273 . 2 (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺))))
43simplbi 497 1 (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   × cxp 5614  cres 5618  cfv 6481  Basecbs 17120  distcds 17170  MetSpcms 24234  CMetccmet 25182  CMetSpccms 25260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-res 5628  df-iota 6437  df-fv 6489  df-cms 25263
This theorem is referenced by:  cmsss  25279  cmetcusp1  25281  rlmbn  25289  cmscsscms  25301  rrhcn  34008  dya2icoseg2  34289  sitgclbn  34354
  Copyright terms: Public domain W3C validator