| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmsms | Structured version Visualization version GIF version | ||
| Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| cmsms | ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
| 3 | 1, 2 | iscms 25275 | . 2 ⊢ (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺)))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 × cxp 5619 ↾ cres 5623 ‘cfv 6488 Basecbs 17124 distcds 17174 MetSpcms 24236 CMetccmet 25184 CMetSpccms 25262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-res 5633 df-iota 6444 df-fv 6496 df-cms 25265 |
| This theorem is referenced by: cmsss 25281 cmetcusp1 25283 rlmbn 25291 cmscsscms 25303 rrhcn 34033 dya2icoseg2 34314 sitgclbn 34379 |
| Copyright terms: Public domain | W3C validator |