Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmsms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
cmsms | ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2737 | . . 3 ⊢ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) | |
3 | 1, 2 | iscms 24615 | . 2 ⊢ (𝐺 ∈ CMetSp ↔ (𝐺 ∈ MetSp ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (CMet‘(Base‘𝐺)))) |
4 | 3 | simplbi 499 | 1 ⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 × cxp 5623 ↾ cres 5627 ‘cfv 6484 Basecbs 17010 distcds 17069 MetSpcms 23577 CMetccmet 24524 CMetSpccms 24602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-nul 5255 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-xp 5631 df-res 5637 df-iota 6436 df-fv 6492 df-cms 24605 |
This theorem is referenced by: cmsss 24621 cmetcusp1 24623 rlmbn 24631 cmscsscms 24643 rrhcn 32243 dya2icoseg2 32543 sitgclbn 32608 |
Copyright terms: Public domain | W3C validator |