![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sitgclbn | Structured version Visualization version GIF version |
Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
sitgclbn.1 | ⊢ (𝜑 → 𝑊 ∈ Ban) |
sitgclbn.2 | ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) |
Ref | Expression |
---|---|
sitgclbn | ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.b | . 2 ⊢ 𝐵 = (Base‘𝑊) | |
2 | sitgval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝑊) | |
3 | sitgval.s | . 2 ⊢ 𝑆 = (sigaGen‘𝐽) | |
4 | sitgval.0 | . 2 ⊢ 0 = (0g‘𝑊) | |
5 | sitgval.x | . 2 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | sitgval.h | . 2 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
7 | sitgval.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
8 | sitgval.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
9 | sibfmbl.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
10 | eqid 2740 | . 2 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
11 | eqid 2740 | . 2 ⊢ ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))) | |
12 | sitgclbn.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Ban) | |
13 | bncms 25399 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
14 | cmsms 25403 | . . 3 ⊢ (𝑊 ∈ CMetSp → 𝑊 ∈ MetSp) | |
15 | mstps 24488 | . . 3 ⊢ (𝑊 ∈ MetSp → 𝑊 ∈ TopSp) | |
16 | 12, 13, 14, 15 | 4syl 19 | . 2 ⊢ (𝜑 → 𝑊 ∈ TopSp) |
17 | bnlmod 25398 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ LMod) | |
18 | lmodcmn 20932 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) | |
19 | 12, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑊 ∈ CMnd) |
20 | sitgclbn.2 | . 2 ⊢ (𝜑 → (Scalar‘𝑊) ∈ ℝExt ) | |
21 | 12, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥 ∈ 𝐵) → 𝑊 ∈ LMod) |
23 | imassrn 6102 | . . . . . 6 ⊢ (𝐻 “ (0[,)+∞)) ⊆ ran 𝐻 | |
24 | 6 | rneqi 5962 | . . . . . . 7 ⊢ ran 𝐻 = ran (ℝHom‘(Scalar‘𝑊)) |
25 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
26 | 25 | rrhfe 33960 | . . . . . . . 8 ⊢ ((Scalar‘𝑊) ∈ ℝExt → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊))) |
27 | frn 6756 | . . . . . . . 8 ⊢ ((ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)) → ran (ℝHom‘(Scalar‘𝑊)) ⊆ (Base‘(Scalar‘𝑊))) | |
28 | 20, 26, 27 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ran (ℝHom‘(Scalar‘𝑊)) ⊆ (Base‘(Scalar‘𝑊))) |
29 | 24, 28 | eqsstrid 4057 | . . . . . 6 ⊢ (𝜑 → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊))) |
30 | 23, 29 | sstrid 4020 | . . . . 5 ⊢ (𝜑 → (𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊))) |
31 | 30 | sselda 4008 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝐻 “ (0[,)+∞))) → 𝑚 ∈ (Base‘(Scalar‘𝑊))) |
32 | 31 | 3adant3 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥 ∈ 𝐵) → 𝑚 ∈ (Base‘(Scalar‘𝑊))) |
33 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
34 | 1, 10, 5, 25 | lmodvscl 20900 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ 𝐵) → (𝑚 · 𝑥) ∈ 𝐵) |
35 | 22, 32, 33, 34 | syl3anc 1371 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥 ∈ 𝐵) → (𝑚 · 𝑥) ∈ 𝐵) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 19, 20, 35 | sitgclg 34309 | 1 ⊢ (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 × cxp 5698 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ℝcr 11185 0cc0 11186 +∞cpnf 11323 [,)cico 13411 Basecbs 17260 Scalarcsca 17316 ·𝑠 cvsca 17317 distcds 17322 TopOpenctopn 17483 0gc0g 17501 CMndccmn 19824 LModclmod 20882 TopSpctps 22961 MetSpcms 24351 CMetSpccms 25387 Bancbn 25388 ℝHomcrrh 33941 ℝExt crrext 33942 sigaGencsigagen 34104 measurescmeas 34161 sitgcsitg 34296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-addf 11265 ax-mulf 11266 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-fi 9482 df-sup 9513 df-inf 9514 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ioo 13413 df-ico 13415 df-icc 13416 df-fz 13570 df-fzo 13714 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-hash 14382 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-dvds 16305 df-gcd 16543 df-numer 16784 df-denom 16785 df-gz 16979 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-pt 17506 df-prds 17509 df-xrs 17564 df-qtop 17569 df-imas 17570 df-xps 17572 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-mulg 19110 df-subg 19165 df-ghm 19255 df-cntz 19359 df-od 19572 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-cring 20265 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-dvr 20429 df-rhm 20500 df-nzr 20541 df-subrng 20574 df-subrg 20599 df-drng 20755 df-abv 20834 df-lmod 20884 df-psmet 21381 df-xmet 21382 df-met 21383 df-bl 21384 df-mopn 21385 df-fbas 21386 df-fg 21387 df-metu 21388 df-cnfld 21390 df-zring 21483 df-zrh 21539 df-zlm 21540 df-chr 21541 df-refld 21648 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-cld 23050 df-ntr 23051 df-cls 23052 df-nei 23129 df-cn 23258 df-cnp 23259 df-haus 23346 df-reg 23347 df-cmp 23418 df-tx 23593 df-hmeo 23786 df-fil 23877 df-fm 23969 df-flim 23970 df-flf 23971 df-fcls 23972 df-cnext 24091 df-ust 24232 df-utop 24263 df-uss 24288 df-usp 24289 df-ucn 24308 df-cfilu 24319 df-cusp 24330 df-xms 24353 df-ms 24354 df-tms 24355 df-nm 24618 df-ngp 24619 df-nrg 24621 df-nlm 24622 df-nvc 24623 df-cncf 24925 df-cfil 25310 df-cmet 25312 df-cms 25390 df-bn 25391 df-qqh 33921 df-rrh 33943 df-rrext 33947 df-esum 33994 df-siga 34075 df-sigagen 34105 df-meas 34162 df-mbfm 34216 df-sitg 34297 |
This theorem is referenced by: sitgclcn 34311 sitgclre 34312 |
Copyright terms: Public domain | W3C validator |