Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgclbn Structured version   Visualization version   GIF version

Theorem sitgclbn 31829
Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
sibfmbl.1 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitgclbn.1 (𝜑𝑊 ∈ Ban)
sitgclbn.2 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
Assertion
Ref Expression
sitgclbn (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)

Proof of Theorem sitgclbn
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . 2 𝐵 = (Base‘𝑊)
2 sitgval.j . 2 𝐽 = (TopOpen‘𝑊)
3 sitgval.s . 2 𝑆 = (sigaGen‘𝐽)
4 sitgval.0 . 2 0 = (0g𝑊)
5 sitgval.x . 2 · = ( ·𝑠𝑊)
6 sitgval.h . 2 𝐻 = (ℝHom‘(Scalar‘𝑊))
7 sitgval.1 . 2 (𝜑𝑊𝑉)
8 sitgval.2 . 2 (𝜑𝑀 ran measures)
9 sibfmbl.1 . 2 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
10 eqid 2758 . 2 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2758 . 2 ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊)))) = ((dist‘(Scalar‘𝑊)) ↾ ((Base‘(Scalar‘𝑊)) × (Base‘(Scalar‘𝑊))))
12 sitgclbn.1 . . . 4 (𝜑𝑊 ∈ Ban)
13 bncms 24044 . . . 4 (𝑊 ∈ Ban → 𝑊 ∈ CMetSp)
1412, 13syl 17 . . 3 (𝜑𝑊 ∈ CMetSp)
15 cmsms 24048 . . 3 (𝑊 ∈ CMetSp → 𝑊 ∈ MetSp)
16 mstps 23157 . . 3 (𝑊 ∈ MetSp → 𝑊 ∈ TopSp)
1714, 15, 163syl 18 . 2 (𝜑𝑊 ∈ TopSp)
18 bnlmod 24043 . . 3 (𝑊 ∈ Ban → 𝑊 ∈ LMod)
19 lmodcmn 19750 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
2012, 18, 193syl 18 . 2 (𝜑𝑊 ∈ CMnd)
21 sitgclbn.2 . 2 (𝜑 → (Scalar‘𝑊) ∈ ℝExt )
2212, 18syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
23223ad2ant1 1130 . . 3 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → 𝑊 ∈ LMod)
24 imassrn 5912 . . . . . 6 (𝐻 “ (0[,)+∞)) ⊆ ran 𝐻
256rneqi 5778 . . . . . . 7 ran 𝐻 = ran (ℝHom‘(Scalar‘𝑊))
26 eqid 2758 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2726rrhfe 31481 . . . . . . . 8 ((Scalar‘𝑊) ∈ ℝExt → (ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)))
28 frn 6504 . . . . . . . 8 ((ℝHom‘(Scalar‘𝑊)):ℝ⟶(Base‘(Scalar‘𝑊)) → ran (ℝHom‘(Scalar‘𝑊)) ⊆ (Base‘(Scalar‘𝑊)))
2921, 27, 283syl 18 . . . . . . 7 (𝜑 → ran (ℝHom‘(Scalar‘𝑊)) ⊆ (Base‘(Scalar‘𝑊)))
3025, 29eqsstrid 3940 . . . . . 6 (𝜑 → ran 𝐻 ⊆ (Base‘(Scalar‘𝑊)))
3124, 30sstrid 3903 . . . . 5 (𝜑 → (𝐻 “ (0[,)+∞)) ⊆ (Base‘(Scalar‘𝑊)))
3231sselda 3892 . . . 4 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞))) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
33323adant3 1129 . . 3 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → 𝑚 ∈ (Base‘(Scalar‘𝑊)))
34 simp3 1135 . . 3 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → 𝑥𝐵)
351, 10, 5, 26lmodvscl 19719 . . 3 ((𝑊 ∈ LMod ∧ 𝑚 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
3623, 33, 34, 35syl3anc 1368 . 2 ((𝜑𝑚 ∈ (𝐻 “ (0[,)+∞)) ∧ 𝑥𝐵) → (𝑚 · 𝑥) ∈ 𝐵)
371, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 17, 20, 21, 36sitgclg 31828 1 (𝜑 → ((𝑊sitg𝑀)‘𝐹) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wss 3858   cuni 4798   × cxp 5522  dom cdm 5524  ran crn 5525  cres 5526  cima 5527  wf 6331  cfv 6335  (class class class)co 7150  cr 10574  0cc0 10575  +∞cpnf 10710  [,)cico 12781  Basecbs 16541  Scalarcsca 16626   ·𝑠 cvsca 16627  distcds 16632  TopOpenctopn 16753  0gc0g 16771  CMndccmn 18973  LModclmod 19702  TopSpctps 21632  MetSpcms 23020  CMetSpccms 24032  Bancbn 24033  ℝHomcrrh 31462   ℝExt crrext 31463  sigaGencsigagen 31625  measurescmeas 31682  sitgcsitg 31815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656  df-gcd 15894  df-numer 16130  df-denom 16131  df-gz 16321  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-subg 18343  df-ghm 18423  df-cntz 18514  df-od 18723  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-rnghom 19538  df-drng 19572  df-subrg 19601  df-abv 19656  df-lmod 19704  df-nzr 20099  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-metu 20165  df-cnfld 20167  df-zring 20239  df-zrh 20273  df-zlm 20274  df-chr 20275  df-refld 20370  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-cn 21927  df-cnp 21928  df-haus 22015  df-reg 22016  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-fcls 22641  df-cnext 22760  df-ust 22901  df-utop 22932  df-uss 22957  df-usp 22958  df-ucn 22977  df-cfilu 22988  df-cusp 22999  df-xms 23022  df-ms 23023  df-tms 23024  df-nm 23284  df-ngp 23285  df-nrg 23287  df-nlm 23288  df-nvc 23289  df-cncf 23579  df-cfil 23955  df-cmet 23957  df-cms 24035  df-bn 24036  df-qqh 31442  df-rrh 31464  df-rrext 31468  df-esum 31515  df-siga 31596  df-sigagen 31626  df-meas 31683  df-mbfm 31737  df-sitg 31816
This theorem is referenced by:  sitgclcn  31830  sitgclre  31831
  Copyright terms: Public domain W3C validator