Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj158 Structured version   Visualization version   GIF version

Theorem bnj158 33740
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj158.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj158 (𝑚𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝)
Distinct variable group:   𝑚,𝑝
Allowed substitution hints:   𝐷(𝑚,𝑝)

Proof of Theorem bnj158
StepHypRef Expression
1 bnj158.1 . . . 4 𝐷 = (ω ∖ {∅})
21eleq2i 2826 . . 3 (𝑚𝐷𝑚 ∈ (ω ∖ {∅}))
3 eldifsn 4791 . . 3 (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
42, 3bitri 275 . 2 (𝑚𝐷 ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅))
5 nnsuc 7873 . 2 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → ∃𝑝 ∈ ω 𝑚 = suc 𝑝)
64, 5sylbi 216 1 (𝑚𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wrex 3071  cdif 3946  c0 4323  {csn 4629  suc csuc 6367  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-om 7856
This theorem is referenced by:  bnj168  33741  bnj600  33930  bnj986  33966
  Copyright terms: Public domain W3C validator