Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj158 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj158.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj158 | ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj158.1 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑚 ∈ 𝐷 ↔ 𝑚 ∈ (ω ∖ {∅})) |
3 | eldifsn 4720 | . . 3 ⊢ (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (𝑚 ∈ 𝐷 ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) |
5 | nnsuc 7730 | . 2 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) | |
6 | 4, 5 | sylbi 216 | 1 ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 ∅c0 4256 {csn 4561 suc csuc 6268 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 |
This theorem is referenced by: bnj168 32709 bnj600 32899 bnj986 32935 |
Copyright terms: Public domain | W3C validator |