![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj158 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj158.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj158 | ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj158.1 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2831 | . . 3 ⊢ (𝑚 ∈ 𝐷 ↔ 𝑚 ∈ (ω ∖ {∅})) |
3 | eldifsn 4791 | . . 3 ⊢ (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (𝑚 ∈ 𝐷 ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) |
5 | nnsuc 7905 | . 2 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) | |
6 | 4, 5 | sylbi 217 | 1 ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ∖ cdif 3960 ∅c0 4339 {csn 4631 suc csuc 6388 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 |
This theorem is referenced by: bnj168 34723 bnj600 34912 bnj986 34948 |
Copyright terms: Public domain | W3C validator |