| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj158 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj158.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj158 | ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj158.1 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 2 | 1 | eleq2i 2833 | . . 3 ⊢ (𝑚 ∈ 𝐷 ↔ 𝑚 ∈ (ω ∖ {∅})) |
| 3 | eldifsn 4786 | . . 3 ⊢ (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝑚 ∈ 𝐷 ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) |
| 5 | nnsuc 7905 | . 2 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∖ cdif 3948 ∅c0 4333 {csn 4626 suc csuc 6386 ωcom 7887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-om 7888 |
| This theorem is referenced by: bnj168 34744 bnj600 34933 bnj986 34969 |
| Copyright terms: Public domain | W3C validator |