| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj158 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj158.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj158 | ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj158.1 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑚 ∈ 𝐷 ↔ 𝑚 ∈ (ω ∖ {∅})) |
| 3 | eldifsn 4737 | . . 3 ⊢ (𝑚 ∈ (ω ∖ {∅}) ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝑚 ∈ 𝐷 ↔ (𝑚 ∈ ω ∧ 𝑚 ≠ ∅)) |
| 5 | nnsuc 7817 | . 2 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3900 ∅c0 4284 {csn 4577 suc csuc 6309 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 |
| This theorem is referenced by: bnj168 34713 bnj600 34902 bnj986 34938 |
| Copyright terms: Public domain | W3C validator |