Step | Hyp | Ref
| Expression |
1 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑡 → (𝑢‘𝑧) = (𝑡‘𝑧)) |
2 | 1 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑢 = 𝑡 → (𝑁‘(𝑢‘𝑧)) = (𝑁‘(𝑡‘𝑧))) |
3 | 2 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑢 = 𝑡 → ((𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑑)) |
4 | 3 | cbvralvw 3383 |
. . . . . . 7
⊢
(∀𝑢 ∈
𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑑) |
5 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑐)) |
6 | 5 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐)) |
7 | 4, 6 | syl5bb 283 |
. . . . . 6
⊢ (𝑑 = 𝑐 → (∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐)) |
8 | 7 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑑 ∈
ℝ ∀𝑢 ∈
𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐) |
9 | | 2fveq3 6779 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘𝑥))) |
10 | 9 | breq1d 5084 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) |
11 | 10 | rexralbidv 3230 |
. . . . 5
⊢ (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) |
12 | 8, 11 | syl5bb 283 |
. . . 4
⊢ (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) |
13 | 12 | cbvralvw 3383 |
. . 3
⊢
(∀𝑧 ∈
𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) |
14 | | ubth.1 |
. . . . . 6
⊢ 𝑋 = (BaseSet‘𝑈) |
15 | | ubth.2 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑊) |
16 | | ubthlem.3 |
. . . . . 6
⊢ 𝐷 = (IndMet‘𝑈) |
17 | | ubthlem.4 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
18 | | ubthlem.5 |
. . . . . 6
⊢ 𝑈 ∈ CBan |
19 | | ubthlem.6 |
. . . . . 6
⊢ 𝑊 ∈ NrmCVec |
20 | | ubthlem.7 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) |
21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) |
22 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) |
23 | 22, 13 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) |
24 | | fveq1 6773 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑡 → (𝑢‘𝑑) = (𝑡‘𝑑)) |
25 | 24 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑡 → (𝑁‘(𝑢‘𝑑)) = (𝑁‘(𝑡‘𝑑))) |
26 | 25 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑡 → ((𝑁‘(𝑢‘𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡‘𝑑)) ≤ 𝑚)) |
27 | 26 | cbvralvw 3383 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑑)) ≤ 𝑚) |
28 | | 2fveq3 6779 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑧 → (𝑁‘(𝑡‘𝑑)) = (𝑁‘(𝑡‘𝑧))) |
29 | 28 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → ((𝑁‘(𝑡‘𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑚)) |
30 | 29 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑑)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚)) |
31 | 27, 30 | syl5bb 283 |
. . . . . . . . 9
⊢ (𝑑 = 𝑧 → (∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚)) |
32 | 31 | cbvrabv 3426 |
. . . . . . . 8
⊢ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚} |
33 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘)) |
34 | 33 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘)) |
35 | 34 | rabbidv 3414 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
36 | 32, 35 | eqtrid 2790 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
37 | 36 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
38 | 14, 15, 16, 17, 18, 19, 21, 23, 37 | ubthlem1 29232 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛)) |
39 | 20 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) |
40 | 23 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) |
41 | | simplrl 774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ) |
42 | | simplrr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦 ∈ 𝑋) |
43 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+) |
44 | | simprr 770 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛)) |
45 | 14, 15, 16, 17, 18, 19, 39, 40, 37, 41, 42, 43, 44 | ubthlem2 29233 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |
46 | 45 | expr 457 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |
47 | 46 | rexlimdva 3213 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |
48 | 47 | rexlimdvva 3223 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |
49 | 38, 48 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |
50 | 49 | ex 413 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |
51 | 13, 50 | syl5bir 242 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |
52 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ) |
53 | | bnnv 29228 |
. . . . . . . 8
⊢ (𝑈 ∈ CBan → 𝑈 ∈
NrmCVec) |
54 | 18, 53 | ax-mp 5 |
. . . . . . 7
⊢ 𝑈 ∈ NrmCVec |
55 | | eqid 2738 |
. . . . . . . 8
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
56 | 14, 55 | nvcl 29023 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
57 | 54, 56 | mpan 687 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
58 | | remulcl 10956 |
. . . . . 6
⊢ ((𝑑 ∈ ℝ ∧
((normCV‘𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) |
59 | 52, 57, 58 | syl2an 596 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (𝑑 · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) |
60 | 20 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) |
61 | 60 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) |
62 | 61 | ad2ant2r 744 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) |
63 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
64 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊) |
65 | 14, 63, 64 | blof 29147 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
66 | 54, 19, 65 | mp3an12 1450 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
67 | 62, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
68 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥 ∈ 𝑋) |
69 | 67, 68 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) |
70 | 63, 15 | nvcl 29023 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
71 | 19, 70 | mpan 687 |
. . . . . . . . 9
⊢ ((𝑡‘𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
72 | 69, 71 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
73 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) |
74 | 14, 63, 73 | nmoxr 29128 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈
ℝ*) |
75 | 54, 19, 74 | mp3an12 1450 |
. . . . . . . . . . 11
⊢ (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈
ℝ*) |
76 | 67, 75 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈
ℝ*) |
77 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ) |
78 | 14, 63, 73 | nmogtmnf 29132 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡)) |
79 | 54, 19, 78 | mp3an12 1450 |
. . . . . . . . . . 11
⊢ (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡)) |
80 | 67, 79 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡)) |
81 | | simprr 770 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |
82 | | xrre 12903 |
. . . . . . . . . 10
⊢
(((((𝑈
normOpOLD 𝑊)‘𝑡) ∈ ℝ* ∧ 𝑑 ∈ ℝ) ∧ (-∞
< ((𝑈
normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ) |
83 | 76, 77, 80, 81, 82 | syl22anc 836 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ) |
84 | 57 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
85 | | remulcl 10956 |
. . . . . . . . 9
⊢ ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧
((normCV‘𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) |
86 | 83, 84, 85 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) |
87 | 59 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) |
88 | 14, 55, 15, 73, 64, 54, 19 | nmblolbi 29162 |
. . . . . . . . 9
⊢ ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥))) |
89 | 62, 68, 88 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡‘𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥))) |
90 | 14, 55 | nvge0 29035 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → 0 ≤
((normCV‘𝑈)‘𝑥)) |
91 | 54, 90 | mpan 687 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → 0 ≤
((normCV‘𝑈)‘𝑥)) |
92 | 57, 91 | jca 512 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → (((normCV‘𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤
((normCV‘𝑈)‘𝑥))) |
93 | 92 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV‘𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤
((normCV‘𝑈)‘𝑥))) |
94 | | lemul1a 11829 |
. . . . . . . . 9
⊢
(((((𝑈
normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧
(((normCV‘𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤
((normCV‘𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) |
95 | 83, 77, 93, 81, 94 | syl31anc 1372 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) |
96 | 72, 86, 87, 89, 95 | letrd 11132 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) |
97 | 96 | expr 457 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥)))) |
98 | 97 | ralimdva 3108 |
. . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥)))) |
99 | | brralrspcev 5134 |
. . . . 5
⊢ (((𝑑 ·
((normCV‘𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) |
100 | 59, 98, 99 | syl6an 681 |
. . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) |
101 | 100 | ralrimdva 3106 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) |
102 | 101 | rexlimdva 3213 |
. 2
⊢ (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) |
103 | 51, 102 | impbid 211 |
1
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |