Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem3 Structured version   Visualization version   GIF version

Theorem ubthlem3 28659
 Description: Lemma for ubth 28660. Prove the reverse implication, using nmblolbi 28587. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
Assertion
Ref Expression
ubthlem3 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝐷   𝑡,𝐽,𝑥   𝑡,𝑑,𝑥,𝑐,𝑁   𝜑,𝑐,𝑡,𝑥   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥   𝜑,𝑑
Allowed substitution hints:   𝐷(𝑑)   𝐽(𝑐,𝑑)

Proof of Theorem ubthlem3
Dummy variables 𝑘 𝑛 𝑟 𝑦 𝑧 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6648 . . . . . . . . . 10 (𝑢 = 𝑡 → (𝑢𝑧) = (𝑡𝑧))
21fveq2d 6653 . . . . . . . . 9 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑧)) = (𝑁‘(𝑡𝑧)))
32breq1d 5043 . . . . . . . 8 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑑))
43cbvralvw 3399 . . . . . . 7 (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑)
5 breq2 5037 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑐))
65ralbidv 3165 . . . . . . 7 (𝑑 = 𝑐 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
74, 6syl5bb 286 . . . . . 6 (𝑑 = 𝑐 → (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
87cbvrexvw 3400 . . . . 5 (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐)
9 2fveq3 6654 . . . . . . 7 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
109breq1d 5043 . . . . . 6 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1110rexralbidv 3263 . . . . 5 (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
128, 11syl5bb 286 . . . 4 (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1312cbvralvw 3399 . . 3 (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
14 ubth.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
15 ubth.2 . . . . . 6 𝑁 = (normCV𝑊)
16 ubthlem.3 . . . . . 6 𝐷 = (IndMet‘𝑈)
17 ubthlem.4 . . . . . 6 𝐽 = (MetOpen‘𝐷)
18 ubthlem.5 . . . . . 6 𝑈 ∈ CBan
19 ubthlem.6 . . . . . 6 𝑊 ∈ NrmCVec
20 ubthlem.7 . . . . . . 7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
2120adantr 484 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
22 simpr 488 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑)
2322, 13sylib 221 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
24 fveq1 6648 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (𝑢𝑑) = (𝑡𝑑))
2524fveq2d 6653 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑑)) = (𝑁‘(𝑡𝑑)))
2625breq1d 5043 . . . . . . . . . . 11 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑑)) ≤ 𝑚))
2726cbvralvw 3399 . . . . . . . . . 10 (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚)
28 2fveq3 6654 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝑁‘(𝑡𝑑)) = (𝑁‘(𝑡𝑧)))
2928breq1d 5043 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3029ralbidv 3165 . . . . . . . . . 10 (𝑑 = 𝑧 → (∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3127, 30syl5bb 286 . . . . . . . . 9 (𝑑 = 𝑧 → (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3231cbvrabv 3442 . . . . . . . 8 {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚}
33 breq2 5037 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3433ralbidv 3165 . . . . . . . . 9 (𝑚 = 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3534rabbidv 3430 . . . . . . . 8 (𝑚 = 𝑘 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3632, 35syl5eq 2848 . . . . . . 7 (𝑚 = 𝑘 → {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3736cbvmptv 5136 . . . . . 6 (𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3814, 15, 16, 17, 18, 19, 21, 23, 37ubthlem1 28657 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
3920ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
4023ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
41 simplrl 776 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ)
42 simplrr 777 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦𝑋)
43 simprl 770 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+)
44 simprr 772 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
4514, 15, 16, 17, 18, 19, 39, 40, 37, 41, 42, 43, 44ubthlem2 28658 . . . . . . . 8 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
4645expr 460 . . . . . . 7 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4746rexlimdva 3246 . . . . . 6 (((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4847rexlimdvva 3256 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4938, 48mpd 15 . . . 4 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
5049ex 416 . . 3 (𝜑 → (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5113, 50syl5bir 246 . 2 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
52 simpr 488 . . . . . 6 ((𝜑𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
53 bnnv 28653 . . . . . . . 8 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
5418, 53ax-mp 5 . . . . . . 7 𝑈 ∈ NrmCVec
55 eqid 2801 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
5614, 55nvcl 28448 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5754, 56mpan 689 . . . . . 6 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
58 remulcl 10615 . . . . . 6 ((𝑑 ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
5952, 57, 58syl2an 598 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
6020sselda 3918 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6160adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℝ) ∧ 𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6261ad2ant2r 746 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
63 eqid 2801 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
64 eqid 2801 . . . . . . . . . . . . 13 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
6514, 63, 64blof 28572 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6654, 19, 65mp3an12 1448 . . . . . . . . . . 11 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6762, 66syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
68 simplr 768 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥𝑋)
6967, 68ffvelrnd 6833 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
7063, 15nvcl 28448 . . . . . . . . . 10 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7119, 70mpan 689 . . . . . . . . 9 ((𝑡𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7269, 71syl 17 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
73 eqid 2801 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
7414, 63, 73nmoxr 28553 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7554, 19, 74mp3an12 1448 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7667, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
77 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ)
7814, 63, 73nmogtmnf 28557 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
7954, 19, 78mp3an12 1448 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
8067, 79syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
81 simprr 772 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
82 xrre 12554 . . . . . . . . . 10 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*𝑑 ∈ ℝ) ∧ (-∞ < ((𝑈 normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8376, 77, 80, 81, 82syl22anc 837 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8457ad2antlr 726 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV𝑈)‘𝑥) ∈ ℝ)
85 remulcl 10615 . . . . . . . . 9 ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8683, 84, 85syl2anc 587 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8759adantr 484 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8814, 55, 15, 73, 64, 54, 19nmblolbi 28587 . . . . . . . . 9 ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
8962, 68, 88syl2anc 587 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
9014, 55nvge0 28460 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ ((normCV𝑈)‘𝑥))
9154, 90mpan 689 . . . . . . . . . . 11 (𝑥𝑋 → 0 ≤ ((normCV𝑈)‘𝑥))
9257, 91jca 515 . . . . . . . . . 10 (𝑥𝑋 → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
9392ad2antlr 726 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
94 lemul1a 11487 . . . . . . . . 9 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9583, 77, 93, 81, 94syl31anc 1370 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9672, 86, 87, 89, 95letrd 10790 . . . . . . 7 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9796expr 460 . . . . . 6 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ 𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
9897ralimdva 3147 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
99 brralrspcev 5093 . . . . 5 (((𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
10059, 98, 99syl6an 683 . . . 4 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
101100ralrimdva 3157 . . 3 ((𝜑𝑑 ∈ ℝ) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
102101rexlimdva 3246 . 2 (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
10351, 102impbid 215 1 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  {crab 3113   ⊆ wss 3884   class class class wbr 5033   ↦ cmpt 5113  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  0cc0 10530   · cmul 10535  -∞cmnf 10666  ℝ*cxr 10667   < clt 10668   ≤ cle 10669  ℕcn 11629  ℝ+crp 12381  MetOpencmopn 20085  NrmCVeccnv 28371  BaseSetcba 28373  normCVcnmcv 28377  IndMetcims 28378   normOpOLD cnmoo 28528   BLnOp cblo 28529  CBanccbn 28649 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-dc 9861  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-rest 16692  df-topgen 16713  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-top 21503  df-topon 21520  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-cn 21836  df-cnp 21837  df-lm 21838  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-cfil 23863  df-cau 23864  df-cmet 23865  df-grpo 28280  df-gid 28281  df-ginv 28282  df-gdiv 28283  df-ablo 28332  df-vc 28346  df-nv 28379  df-va 28382  df-ba 28383  df-sm 28384  df-0v 28385  df-vs 28386  df-nmcv 28387  df-ims 28388  df-lno 28531  df-nmoo 28532  df-blo 28533  df-0o 28534  df-cbn 28650 This theorem is referenced by:  ubth  28660
 Copyright terms: Public domain W3C validator