MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem3 Structured version   Visualization version   GIF version

Theorem ubthlem3 30808
Description: Lemma for ubth 30809. Prove the reverse implication, using nmblolbi 30736. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
Assertion
Ref Expression
ubthlem3 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝐷   𝑡,𝐽,𝑥   𝑡,𝑑,𝑥,𝑐,𝑁   𝜑,𝑐,𝑡,𝑥   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥   𝜑,𝑑
Allowed substitution hints:   𝐷(𝑑)   𝐽(𝑐,𝑑)

Proof of Theorem ubthlem3
Dummy variables 𝑘 𝑛 𝑟 𝑦 𝑧 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6860 . . . . . . . . . 10 (𝑢 = 𝑡 → (𝑢𝑧) = (𝑡𝑧))
21fveq2d 6865 . . . . . . . . 9 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑧)) = (𝑁‘(𝑡𝑧)))
32breq1d 5120 . . . . . . . 8 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑑))
43cbvralvw 3216 . . . . . . 7 (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑)
5 breq2 5114 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑐))
65ralbidv 3157 . . . . . . 7 (𝑑 = 𝑐 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
74, 6bitrid 283 . . . . . 6 (𝑑 = 𝑐 → (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
87cbvrexvw 3217 . . . . 5 (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐)
9 2fveq3 6866 . . . . . . 7 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
109breq1d 5120 . . . . . 6 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1110rexralbidv 3204 . . . . 5 (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
128, 11bitrid 283 . . . 4 (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1312cbvralvw 3216 . . 3 (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
14 ubth.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
15 ubth.2 . . . . . 6 𝑁 = (normCV𝑊)
16 ubthlem.3 . . . . . 6 𝐷 = (IndMet‘𝑈)
17 ubthlem.4 . . . . . 6 𝐽 = (MetOpen‘𝐷)
18 ubthlem.5 . . . . . 6 𝑈 ∈ CBan
19 ubthlem.6 . . . . . 6 𝑊 ∈ NrmCVec
20 ubthlem.7 . . . . . . 7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
2120adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
22 simpr 484 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑)
2322, 13sylib 218 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
24 fveq1 6860 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (𝑢𝑑) = (𝑡𝑑))
2524fveq2d 6865 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑑)) = (𝑁‘(𝑡𝑑)))
2625breq1d 5120 . . . . . . . . . . 11 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑑)) ≤ 𝑚))
2726cbvralvw 3216 . . . . . . . . . 10 (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚)
28 2fveq3 6866 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝑁‘(𝑡𝑑)) = (𝑁‘(𝑡𝑧)))
2928breq1d 5120 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3029ralbidv 3157 . . . . . . . . . 10 (𝑑 = 𝑧 → (∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3127, 30bitrid 283 . . . . . . . . 9 (𝑑 = 𝑧 → (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3231cbvrabv 3419 . . . . . . . 8 {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚}
33 breq2 5114 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3433ralbidv 3157 . . . . . . . . 9 (𝑚 = 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3534rabbidv 3416 . . . . . . . 8 (𝑚 = 𝑘 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3632, 35eqtrid 2777 . . . . . . 7 (𝑚 = 𝑘 → {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3736cbvmptv 5214 . . . . . 6 (𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3814, 15, 16, 17, 18, 19, 21, 23, 37ubthlem1 30806 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
3920ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
4023ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
41 simplrl 776 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ)
42 simplrr 777 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦𝑋)
43 simprl 770 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+)
44 simprr 772 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
4514, 15, 16, 17, 18, 19, 39, 40, 37, 41, 42, 43, 44ubthlem2 30807 . . . . . . . 8 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
4645expr 456 . . . . . . 7 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4746rexlimdva 3135 . . . . . 6 (((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4847rexlimdvva 3195 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4938, 48mpd 15 . . . 4 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
5049ex 412 . . 3 (𝜑 → (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5113, 50biimtrrid 243 . 2 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
52 simpr 484 . . . . . 6 ((𝜑𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
53 bnnv 30802 . . . . . . . 8 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
5418, 53ax-mp 5 . . . . . . 7 𝑈 ∈ NrmCVec
55 eqid 2730 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
5614, 55nvcl 30597 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5754, 56mpan 690 . . . . . 6 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
58 remulcl 11160 . . . . . 6 ((𝑑 ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
5952, 57, 58syl2an 596 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
6020sselda 3949 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6160adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℝ) ∧ 𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6261ad2ant2r 747 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
63 eqid 2730 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
64 eqid 2730 . . . . . . . . . . . . 13 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
6514, 63, 64blof 30721 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6654, 19, 65mp3an12 1453 . . . . . . . . . . 11 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6762, 66syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
68 simplr 768 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥𝑋)
6967, 68ffvelcdmd 7060 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
7063, 15nvcl 30597 . . . . . . . . . 10 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7119, 70mpan 690 . . . . . . . . 9 ((𝑡𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7269, 71syl 17 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
73 eqid 2730 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
7414, 63, 73nmoxr 30702 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7554, 19, 74mp3an12 1453 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7667, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
77 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ)
7814, 63, 73nmogtmnf 30706 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
7954, 19, 78mp3an12 1453 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
8067, 79syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
81 simprr 772 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
82 xrre 13136 . . . . . . . . . 10 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*𝑑 ∈ ℝ) ∧ (-∞ < ((𝑈 normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8376, 77, 80, 81, 82syl22anc 838 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8457ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV𝑈)‘𝑥) ∈ ℝ)
85 remulcl 11160 . . . . . . . . 9 ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8683, 84, 85syl2anc 584 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8759adantr 480 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8814, 55, 15, 73, 64, 54, 19nmblolbi 30736 . . . . . . . . 9 ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
8962, 68, 88syl2anc 584 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
9014, 55nvge0 30609 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ ((normCV𝑈)‘𝑥))
9154, 90mpan 690 . . . . . . . . . . 11 (𝑥𝑋 → 0 ≤ ((normCV𝑈)‘𝑥))
9257, 91jca 511 . . . . . . . . . 10 (𝑥𝑋 → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
9392ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
94 lemul1a 12043 . . . . . . . . 9 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9583, 77, 93, 81, 94syl31anc 1375 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9672, 86, 87, 89, 95letrd 11338 . . . . . . 7 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9796expr 456 . . . . . 6 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ 𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
9897ralimdva 3146 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
99 brralrspcev 5170 . . . . 5 (((𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
10059, 98, 99syl6an 684 . . . 4 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
101100ralrimdva 3134 . . 3 ((𝜑𝑑 ∈ ℝ) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
102101rexlimdva 3135 . 2 (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
10351, 102impbid 212 1 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   · cmul 11080  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cn 12193  +crp 12958  MetOpencmopn 21261  NrmCVeccnv 30520  BaseSetcba 30522  normCVcnmcv 30526  IndMetcims 30527   normOpOLD cnmoo 30677   BLnOp cblo 30678  CBanccbn 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-dc 10406  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-lno 30680  df-nmoo 30681  df-blo 30682  df-0o 30683  df-cbn 30799
This theorem is referenced by:  ubth  30809
  Copyright terms: Public domain W3C validator