| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq1 6904 | . . . . . . . . . 10
⊢ (𝑢 = 𝑡 → (𝑢‘𝑧) = (𝑡‘𝑧)) | 
| 2 | 1 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑢 = 𝑡 → (𝑁‘(𝑢‘𝑧)) = (𝑁‘(𝑡‘𝑧))) | 
| 3 | 2 | breq1d 5152 | . . . . . . . 8
⊢ (𝑢 = 𝑡 → ((𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑑)) | 
| 4 | 3 | cbvralvw 3236 | . . . . . . 7
⊢
(∀𝑢 ∈
𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑑) | 
| 5 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑑 = 𝑐 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑐)) | 
| 6 | 5 | ralbidv 3177 | . . . . . . 7
⊢ (𝑑 = 𝑐 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐)) | 
| 7 | 4, 6 | bitrid 283 | . . . . . 6
⊢ (𝑑 = 𝑐 → (∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐)) | 
| 8 | 7 | cbvrexvw 3237 | . . . . 5
⊢
(∃𝑑 ∈
ℝ ∀𝑢 ∈
𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐) | 
| 9 |  | 2fveq3 6910 | . . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘𝑥))) | 
| 10 | 9 | breq1d 5152 | . . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) | 
| 11 | 10 | rexralbidv 3222 | . . . . 5
⊢ (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) | 
| 12 | 8, 11 | bitrid 283 | . . . 4
⊢ (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) | 
| 13 | 12 | cbvralvw 3236 | . . 3
⊢
(∀𝑧 ∈
𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 ↔ ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) | 
| 14 |  | ubth.1 | . . . . . 6
⊢ 𝑋 = (BaseSet‘𝑈) | 
| 15 |  | ubth.2 | . . . . . 6
⊢ 𝑁 =
(normCV‘𝑊) | 
| 16 |  | ubthlem.3 | . . . . . 6
⊢ 𝐷 = (IndMet‘𝑈) | 
| 17 |  | ubthlem.4 | . . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) | 
| 18 |  | ubthlem.5 | . . . . . 6
⊢ 𝑈 ∈ CBan | 
| 19 |  | ubthlem.6 | . . . . . 6
⊢ 𝑊 ∈ NrmCVec | 
| 20 |  | ubthlem.7 | . . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) | 
| 21 | 20 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) | 
| 22 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) | 
| 23 | 22, 13 | sylib 218 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) | 
| 24 |  | fveq1 6904 | . . . . . . . . . . . . 13
⊢ (𝑢 = 𝑡 → (𝑢‘𝑑) = (𝑡‘𝑑)) | 
| 25 | 24 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑡 → (𝑁‘(𝑢‘𝑑)) = (𝑁‘(𝑡‘𝑑))) | 
| 26 | 25 | breq1d 5152 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑡 → ((𝑁‘(𝑢‘𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡‘𝑑)) ≤ 𝑚)) | 
| 27 | 26 | cbvralvw 3236 | . . . . . . . . . 10
⊢
(∀𝑢 ∈
𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑑)) ≤ 𝑚) | 
| 28 |  | 2fveq3 6910 | . . . . . . . . . . . 12
⊢ (𝑑 = 𝑧 → (𝑁‘(𝑡‘𝑑)) = (𝑁‘(𝑡‘𝑧))) | 
| 29 | 28 | breq1d 5152 | . . . . . . . . . . 11
⊢ (𝑑 = 𝑧 → ((𝑁‘(𝑡‘𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑚)) | 
| 30 | 29 | ralbidv 3177 | . . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑑)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚)) | 
| 31 | 27, 30 | bitrid 283 | . . . . . . . . 9
⊢ (𝑑 = 𝑧 → (∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚)) | 
| 32 | 31 | cbvrabv 3446 | . . . . . . . 8
⊢ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚} | 
| 33 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝑘)) | 
| 34 | 33 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑚 = 𝑘 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘)) | 
| 35 | 34 | rabbidv 3443 | . . . . . . . 8
⊢ (𝑚 = 𝑘 → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑚} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) | 
| 36 | 32, 35 | eqtrid 2788 | . . . . . . 7
⊢ (𝑚 = 𝑘 → {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) | 
| 37 | 36 | cbvmptv 5254 | . . . . . 6
⊢ (𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) | 
| 38 | 14, 15, 16, 17, 18, 19, 21, 23, 37 | ubthlem1 30890 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛)) | 
| 39 | 20 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) | 
| 40 | 23 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) | 
| 41 |  | simplrl 776 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ) | 
| 42 |  | simplrr 777 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦 ∈ 𝑋) | 
| 43 |  | simprl 770 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+) | 
| 44 |  | simprr 772 | . . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛)) | 
| 45 | 14, 15, 16, 17, 18, 19, 39, 40, 37, 41, 42, 43, 44 | ubthlem2 30891 | . . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) | 
| 46 | 45 | expr 456 | . . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | 
| 47 | 46 | rexlimdva 3154 | . . . . . 6
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | 
| 48 | 47 | rexlimdvva 3212 | . . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑 ∈ 𝑋 ∣ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | 
| 49 | 38, 48 | mpd 15 | . . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) | 
| 50 | 49 | ex 412 | . . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 ∃𝑑 ∈ ℝ ∀𝑢 ∈ 𝑇 (𝑁‘(𝑢‘𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | 
| 51 | 13, 50 | biimtrrid 243 | . 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | 
| 52 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ) | 
| 53 |  | bnnv 30886 | . . . . . . . 8
⊢ (𝑈 ∈ CBan → 𝑈 ∈
NrmCVec) | 
| 54 | 18, 53 | ax-mp 5 | . . . . . . 7
⊢ 𝑈 ∈ NrmCVec | 
| 55 |  | eqid 2736 | . . . . . . . 8
⊢
(normCV‘𝑈) = (normCV‘𝑈) | 
| 56 | 14, 55 | nvcl 30681 | . . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) | 
| 57 | 54, 56 | mpan 690 | . . . . . 6
⊢ (𝑥 ∈ 𝑋 → ((normCV‘𝑈)‘𝑥) ∈ ℝ) | 
| 58 |  | remulcl 11241 | . . . . . 6
⊢ ((𝑑 ∈ ℝ ∧
((normCV‘𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) | 
| 59 | 52, 57, 58 | syl2an 596 | . . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (𝑑 · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) | 
| 60 | 20 | sselda 3982 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) | 
| 61 | 60 | adantlr 715 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) | 
| 62 | 61 | ad2ant2r 747 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) | 
| 63 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) | 
| 64 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊) | 
| 65 | 14, 63, 64 | blof 30805 | . . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊)) | 
| 66 | 54, 19, 65 | mp3an12 1452 | . . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊)) | 
| 67 | 62, 66 | syl 17 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊)) | 
| 68 |  | simplr 768 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥 ∈ 𝑋) | 
| 69 | 67, 68 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) | 
| 70 | 63, 15 | nvcl 30681 | . . . . . . . . . 10
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) | 
| 71 | 19, 70 | mpan 690 | . . . . . . . . 9
⊢ ((𝑡‘𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) | 
| 72 | 69, 71 | syl 17 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) | 
| 73 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) | 
| 74 | 14, 63, 73 | nmoxr 30786 | . . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈
ℝ*) | 
| 75 | 54, 19, 74 | mp3an12 1452 | . . . . . . . . . . 11
⊢ (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈
ℝ*) | 
| 76 | 67, 75 | syl 17 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈
ℝ*) | 
| 77 |  | simpllr 775 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ) | 
| 78 | 14, 63, 73 | nmogtmnf 30790 | . . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡)) | 
| 79 | 54, 19, 78 | mp3an12 1452 | . . . . . . . . . . 11
⊢ (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡)) | 
| 80 | 67, 79 | syl 17 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡)) | 
| 81 |  | simprr 772 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) | 
| 82 |  | xrre 13212 | . . . . . . . . . 10
⊢
(((((𝑈
normOpOLD 𝑊)‘𝑡) ∈ ℝ* ∧ 𝑑 ∈ ℝ) ∧ (-∞
< ((𝑈
normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ) | 
| 83 | 76, 77, 80, 81, 82 | syl22anc 838 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ) | 
| 84 | 57 | ad2antlr 727 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) | 
| 85 |  | remulcl 11241 | . . . . . . . . 9
⊢ ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧
((normCV‘𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) | 
| 86 | 83, 84, 85 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) | 
| 87 | 59 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV‘𝑈)‘𝑥)) ∈ ℝ) | 
| 88 | 14, 55, 15, 73, 64, 54, 19 | nmblolbi 30820 | . . . . . . . . 9
⊢ ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥))) | 
| 89 | 62, 68, 88 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡‘𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥))) | 
| 90 | 14, 55 | nvge0 30693 | . . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → 0 ≤
((normCV‘𝑈)‘𝑥)) | 
| 91 | 54, 90 | mpan 690 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → 0 ≤
((normCV‘𝑈)‘𝑥)) | 
| 92 | 57, 91 | jca 511 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → (((normCV‘𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤
((normCV‘𝑈)‘𝑥))) | 
| 93 | 92 | ad2antlr 727 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV‘𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤
((normCV‘𝑈)‘𝑥))) | 
| 94 |  | lemul1a 12122 | . . . . . . . . 9
⊢
(((((𝑈
normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧
(((normCV‘𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤
((normCV‘𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) | 
| 95 | 83, 77, 93, 81, 94 | syl31anc 1374 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV‘𝑈)‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) | 
| 96 | 72, 86, 87, 89, 95 | letrd 11419 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ (𝑡 ∈ 𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) | 
| 97 | 96 | expr 456 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥)))) | 
| 98 | 97 | ralimdva 3166 | . . . . 5
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥)))) | 
| 99 |  | brralrspcev 5202 | . . . . 5
⊢ (((𝑑 ·
((normCV‘𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ (𝑑 · ((normCV‘𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) | 
| 100 | 59, 98, 99 | syl6an 684 | . . . 4
⊢ (((𝜑 ∧ 𝑑 ∈ ℝ) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) | 
| 101 | 100 | ralrimdva 3153 | . . 3
⊢ ((𝜑 ∧ 𝑑 ∈ ℝ) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) | 
| 102 | 101 | rexlimdva 3154 | . 2
⊢ (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐)) | 
| 103 | 51, 102 | impbid 212 | 1
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) |