MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem3 Structured version   Visualization version   GIF version

Theorem ubthlem3 28907
Description: Lemma for ubth 28908. Prove the reverse implication, using nmblolbi 28835. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
Assertion
Ref Expression
ubthlem3 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝐷   𝑡,𝐽,𝑥   𝑡,𝑑,𝑥,𝑐,𝑁   𝜑,𝑐,𝑡,𝑥   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥   𝜑,𝑑
Allowed substitution hints:   𝐷(𝑑)   𝐽(𝑐,𝑑)

Proof of Theorem ubthlem3
Dummy variables 𝑘 𝑛 𝑟 𝑦 𝑧 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6694 . . . . . . . . . 10 (𝑢 = 𝑡 → (𝑢𝑧) = (𝑡𝑧))
21fveq2d 6699 . . . . . . . . 9 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑧)) = (𝑁‘(𝑡𝑧)))
32breq1d 5049 . . . . . . . 8 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑑))
43cbvralvw 3348 . . . . . . 7 (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑)
5 breq2 5043 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑐))
65ralbidv 3108 . . . . . . 7 (𝑑 = 𝑐 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
74, 6syl5bb 286 . . . . . 6 (𝑑 = 𝑐 → (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
87cbvrexvw 3349 . . . . 5 (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐)
9 2fveq3 6700 . . . . . . 7 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
109breq1d 5049 . . . . . 6 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1110rexralbidv 3210 . . . . 5 (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
128, 11syl5bb 286 . . . 4 (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1312cbvralvw 3348 . . 3 (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
14 ubth.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
15 ubth.2 . . . . . 6 𝑁 = (normCV𝑊)
16 ubthlem.3 . . . . . 6 𝐷 = (IndMet‘𝑈)
17 ubthlem.4 . . . . . 6 𝐽 = (MetOpen‘𝐷)
18 ubthlem.5 . . . . . 6 𝑈 ∈ CBan
19 ubthlem.6 . . . . . 6 𝑊 ∈ NrmCVec
20 ubthlem.7 . . . . . . 7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
2120adantr 484 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
22 simpr 488 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑)
2322, 13sylib 221 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
24 fveq1 6694 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (𝑢𝑑) = (𝑡𝑑))
2524fveq2d 6699 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑑)) = (𝑁‘(𝑡𝑑)))
2625breq1d 5049 . . . . . . . . . . 11 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑑)) ≤ 𝑚))
2726cbvralvw 3348 . . . . . . . . . 10 (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚)
28 2fveq3 6700 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝑁‘(𝑡𝑑)) = (𝑁‘(𝑡𝑧)))
2928breq1d 5049 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3029ralbidv 3108 . . . . . . . . . 10 (𝑑 = 𝑧 → (∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3127, 30syl5bb 286 . . . . . . . . 9 (𝑑 = 𝑧 → (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3231cbvrabv 3392 . . . . . . . 8 {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚}
33 breq2 5043 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3433ralbidv 3108 . . . . . . . . 9 (𝑚 = 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3534rabbidv 3380 . . . . . . . 8 (𝑚 = 𝑘 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3632, 35syl5eq 2783 . . . . . . 7 (𝑚 = 𝑘 → {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3736cbvmptv 5143 . . . . . 6 (𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3814, 15, 16, 17, 18, 19, 21, 23, 37ubthlem1 28905 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
3920ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
4023ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
41 simplrl 777 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ)
42 simplrr 778 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦𝑋)
43 simprl 771 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+)
44 simprr 773 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
4514, 15, 16, 17, 18, 19, 39, 40, 37, 41, 42, 43, 44ubthlem2 28906 . . . . . . . 8 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
4645expr 460 . . . . . . 7 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4746rexlimdva 3193 . . . . . 6 (((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4847rexlimdvva 3203 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4938, 48mpd 15 . . . 4 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
5049ex 416 . . 3 (𝜑 → (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5113, 50syl5bir 246 . 2 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
52 simpr 488 . . . . . 6 ((𝜑𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
53 bnnv 28901 . . . . . . . 8 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
5418, 53ax-mp 5 . . . . . . 7 𝑈 ∈ NrmCVec
55 eqid 2736 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
5614, 55nvcl 28696 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5754, 56mpan 690 . . . . . 6 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
58 remulcl 10779 . . . . . 6 ((𝑑 ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
5952, 57, 58syl2an 599 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
6020sselda 3887 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6160adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℝ) ∧ 𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6261ad2ant2r 747 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
63 eqid 2736 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
64 eqid 2736 . . . . . . . . . . . . 13 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
6514, 63, 64blof 28820 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6654, 19, 65mp3an12 1453 . . . . . . . . . . 11 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6762, 66syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
68 simplr 769 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥𝑋)
6967, 68ffvelrnd 6883 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
7063, 15nvcl 28696 . . . . . . . . . 10 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7119, 70mpan 690 . . . . . . . . 9 ((𝑡𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7269, 71syl 17 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
73 eqid 2736 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
7414, 63, 73nmoxr 28801 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7554, 19, 74mp3an12 1453 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7667, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
77 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ)
7814, 63, 73nmogtmnf 28805 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
7954, 19, 78mp3an12 1453 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
8067, 79syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
81 simprr 773 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
82 xrre 12724 . . . . . . . . . 10 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*𝑑 ∈ ℝ) ∧ (-∞ < ((𝑈 normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8376, 77, 80, 81, 82syl22anc 839 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8457ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV𝑈)‘𝑥) ∈ ℝ)
85 remulcl 10779 . . . . . . . . 9 ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8683, 84, 85syl2anc 587 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8759adantr 484 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8814, 55, 15, 73, 64, 54, 19nmblolbi 28835 . . . . . . . . 9 ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
8962, 68, 88syl2anc 587 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
9014, 55nvge0 28708 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ ((normCV𝑈)‘𝑥))
9154, 90mpan 690 . . . . . . . . . . 11 (𝑥𝑋 → 0 ≤ ((normCV𝑈)‘𝑥))
9257, 91jca 515 . . . . . . . . . 10 (𝑥𝑋 → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
9392ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
94 lemul1a 11651 . . . . . . . . 9 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9583, 77, 93, 81, 94syl31anc 1375 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9672, 86, 87, 89, 95letrd 10954 . . . . . . 7 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9796expr 460 . . . . . 6 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ 𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
9897ralimdva 3090 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
99 brralrspcev 5099 . . . . 5 (((𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
10059, 98, 99syl6an 684 . . . 4 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
101100ralrimdva 3100 . . 3 ((𝜑𝑑 ∈ ℝ) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
102101rexlimdva 3193 . 2 (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
10351, 102impbid 215 1 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  {crab 3055  wss 3853   class class class wbr 5039  cmpt 5120  wf 6354  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694   · cmul 10699  -∞cmnf 10830  *cxr 10831   < clt 10832  cle 10833  cn 11795  +crp 12551  MetOpencmopn 20307  NrmCVeccnv 28619  BaseSetcba 28621  normCVcnmcv 28625  IndMetcims 28626   normOpOLD cnmoo 28776   BLnOp cblo 28777  CBanccbn 28897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-dc 10025  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ico 12906  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-rest 16881  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-top 21745  df-topon 21762  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-cn 22078  df-cnp 22079  df-lm 22080  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-cfil 24106  df-cau 24107  df-cmet 24108  df-grpo 28528  df-gid 28529  df-ginv 28530  df-gdiv 28531  df-ablo 28580  df-vc 28594  df-nv 28627  df-va 28630  df-ba 28631  df-sm 28632  df-0v 28633  df-vs 28634  df-nmcv 28635  df-ims 28636  df-lno 28779  df-nmoo 28780  df-blo 28781  df-0o 28782  df-cbn 28898
This theorem is referenced by:  ubth  28908
  Copyright terms: Public domain W3C validator