MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem3 Structured version   Visualization version   GIF version

Theorem ubthlem3 29814
Description: Lemma for ubth 29815. Prove the reverse implication, using nmblolbi 29742. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
Assertion
Ref Expression
ubthlem3 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Distinct variable groups:   𝑥,𝑐,𝑡,𝐷   𝑡,𝐽,𝑥   𝑡,𝑑,𝑥,𝑐,𝑁   𝜑,𝑐,𝑡,𝑥   𝑇,𝑐,𝑑,𝑡,𝑥   𝑈,𝑐,𝑑,𝑡,𝑥   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑡,𝑥   𝜑,𝑑
Allowed substitution hints:   𝐷(𝑑)   𝐽(𝑐,𝑑)

Proof of Theorem ubthlem3
Dummy variables 𝑘 𝑛 𝑟 𝑦 𝑧 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6841 . . . . . . . . . 10 (𝑢 = 𝑡 → (𝑢𝑧) = (𝑡𝑧))
21fveq2d 6846 . . . . . . . . 9 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑧)) = (𝑁‘(𝑡𝑧)))
32breq1d 5115 . . . . . . . 8 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑑))
43cbvralvw 3225 . . . . . . 7 (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑)
5 breq2 5109 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑐))
65ralbidv 3174 . . . . . . 7 (𝑑 = 𝑐 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
74, 6bitrid 282 . . . . . 6 (𝑑 = 𝑐 → (∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐))
87cbvrexvw 3226 . . . . 5 (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐)
9 2fveq3 6847 . . . . . . 7 (𝑧 = 𝑥 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑥)))
109breq1d 5115 . . . . . 6 (𝑧 = 𝑥 → ((𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1110rexralbidv 3214 . . . . 5 (𝑧 = 𝑥 → (∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
128, 11bitrid 282 . . . 4 (𝑧 = 𝑥 → (∃𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
1312cbvralvw 3225 . . 3 (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 ↔ ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
14 ubth.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
15 ubth.2 . . . . . 6 𝑁 = (normCV𝑊)
16 ubthlem.3 . . . . . 6 𝐷 = (IndMet‘𝑈)
17 ubthlem.4 . . . . . 6 𝐽 = (MetOpen‘𝐷)
18 ubthlem.5 . . . . . 6 𝑈 ∈ CBan
19 ubthlem.6 . . . . . 6 𝑊 ∈ NrmCVec
20 ubthlem.7 . . . . . . 7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
2120adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
22 simpr 485 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑)
2322, 13sylib 217 . . . . . 6 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
24 fveq1 6841 . . . . . . . . . . . . 13 (𝑢 = 𝑡 → (𝑢𝑑) = (𝑡𝑑))
2524fveq2d 6846 . . . . . . . . . . . 12 (𝑢 = 𝑡 → (𝑁‘(𝑢𝑑)) = (𝑁‘(𝑡𝑑)))
2625breq1d 5115 . . . . . . . . . . 11 (𝑢 = 𝑡 → ((𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑑)) ≤ 𝑚))
2726cbvralvw 3225 . . . . . . . . . 10 (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚)
28 2fveq3 6847 . . . . . . . . . . . 12 (𝑑 = 𝑧 → (𝑁‘(𝑡𝑑)) = (𝑁‘(𝑡𝑧)))
2928breq1d 5115 . . . . . . . . . . 11 (𝑑 = 𝑧 → ((𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3029ralbidv 3174 . . . . . . . . . 10 (𝑑 = 𝑧 → (∀𝑡𝑇 (𝑁‘(𝑡𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3127, 30bitrid 282 . . . . . . . . 9 (𝑑 = 𝑧 → (∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚))
3231cbvrabv 3417 . . . . . . . 8 {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚}
33 breq2 5109 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3433ralbidv 3174 . . . . . . . . 9 (𝑚 = 𝑘 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘))
3534rabbidv 3415 . . . . . . . 8 (𝑚 = 𝑘 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3632, 35eqtrid 2788 . . . . . . 7 (𝑚 = 𝑘 → {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3736cbvmptv 5218 . . . . . 6 (𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚}) = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
3814, 15, 16, 17, 18, 19, 21, 23, 37ubthlem1 29812 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
3920ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑇 ⊆ (𝑈 BLnOp 𝑊))
4023ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
41 simplrl 775 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑛 ∈ ℕ)
42 simplrr 776 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑦𝑋)
43 simprl 769 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → 𝑟 ∈ ℝ+)
44 simprr 771 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))
4514, 15, 16, 17, 18, 19, 39, 40, 37, 41, 42, 43, 44ubthlem2 29813 . . . . . . . 8 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛))) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
4645expr 457 . . . . . . 7 ((((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) ∧ 𝑟 ∈ ℝ+) → ({𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4746rexlimdva 3152 . . . . . 6 (((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑋)) → (∃𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4847rexlimdvva 3205 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → (∃𝑛 ∈ ℕ ∃𝑦𝑋𝑟 ∈ ℝ+ {𝑧𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ ((𝑚 ∈ ℕ ↦ {𝑑𝑋 ∣ ∀𝑢𝑇 (𝑁‘(𝑢𝑑)) ≤ 𝑚})‘𝑛) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
4938, 48mpd 15 . . . 4 ((𝜑 ∧ ∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
5049ex 413 . . 3 (𝜑 → (∀𝑧𝑋𝑑 ∈ ℝ ∀𝑢𝑇 (𝑁‘(𝑢𝑧)) ≤ 𝑑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
5113, 50biimtrrid 242 . 2 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
52 simpr 485 . . . . . 6 ((𝜑𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
53 bnnv 29808 . . . . . . . 8 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
5418, 53ax-mp 5 . . . . . . 7 𝑈 ∈ NrmCVec
55 eqid 2736 . . . . . . . 8 (normCV𝑈) = (normCV𝑈)
5614, 55nvcl 29603 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5754, 56mpan 688 . . . . . 6 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
58 remulcl 11136 . . . . . 6 ((𝑑 ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
5952, 57, 58syl2an 596 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
6020sselda 3944 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6160adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℝ) ∧ 𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
6261ad2ant2r 745 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
63 eqid 2736 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
64 eqid 2736 . . . . . . . . . . . . 13 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
6514, 63, 64blof 29727 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6654, 19, 65mp3an12 1451 . . . . . . . . . . 11 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡:𝑋⟶(BaseSet‘𝑊))
6762, 66syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑡:𝑋⟶(BaseSet‘𝑊))
68 simplr 767 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑥𝑋)
6967, 68ffvelcdmd 7036 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
7063, 15nvcl 29603 . . . . . . . . . 10 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7119, 70mpan 688 . . . . . . . . 9 ((𝑡𝑥) ∈ (BaseSet‘𝑊) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
7269, 71syl 17 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
73 eqid 2736 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
7414, 63, 73nmoxr 29708 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7554, 19, 74mp3an12 1451 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
7667, 75syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*)
77 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → 𝑑 ∈ ℝ)
7814, 63, 73nmogtmnf 29712 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡:𝑋⟶(BaseSet‘𝑊)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
7954, 19, 78mp3an12 1451 . . . . . . . . . . 11 (𝑡:𝑋⟶(BaseSet‘𝑊) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
8067, 79syl 17 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → -∞ < ((𝑈 normOpOLD 𝑊)‘𝑡))
81 simprr 771 . . . . . . . . . 10 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
82 xrre 13088 . . . . . . . . . 10 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ*𝑑 ∈ ℝ) ∧ (-∞ < ((𝑈 normOpOLD 𝑊)‘𝑡) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8376, 77, 80, 81, 82syl22anc 837 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ)
8457ad2antlr 725 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → ((normCV𝑈)‘𝑥) ∈ ℝ)
85 remulcl 11136 . . . . . . . . 9 ((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ ((normCV𝑈)‘𝑥) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8683, 84, 85syl2anc 584 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8759adantr 481 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ)
8814, 55, 15, 73, 64, 54, 19nmblolbi 29742 . . . . . . . . 9 ((𝑡 ∈ (𝑈 BLnOp 𝑊) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
8962, 68, 88syl2anc 584 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)))
9014, 55nvge0 29615 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → 0 ≤ ((normCV𝑈)‘𝑥))
9154, 90mpan 688 . . . . . . . . . . 11 (𝑥𝑋 → 0 ≤ ((normCV𝑈)‘𝑥))
9257, 91jca 512 . . . . . . . . . 10 (𝑥𝑋 → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
9392ad2antlr 725 . . . . . . . . 9 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥)))
94 lemul1a 12009 . . . . . . . . 9 (((((𝑈 normOpOLD 𝑊)‘𝑡) ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ (((normCV𝑈)‘𝑥) ∈ ℝ ∧ 0 ≤ ((normCV𝑈)‘𝑥))) ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9583, 77, 93, 81, 94syl31anc 1373 . . . . . . . 8 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (((𝑈 normOpOLD 𝑊)‘𝑡) · ((normCV𝑈)‘𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9672, 86, 87, 89, 95letrd 11312 . . . . . . 7 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ (𝑡𝑇 ∧ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥)))
9796expr 457 . . . . . 6 ((((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) ∧ 𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
9897ralimdva 3164 . . . . 5 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))))
99 brralrspcev 5165 . . . . 5 (((𝑑 · ((normCV𝑈)‘𝑥)) ∈ ℝ ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ (𝑑 · ((normCV𝑈)‘𝑥))) → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
10059, 98, 99syl6an 682 . . . 4 (((𝜑𝑑 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∃𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
101100ralrimdva 3151 . . 3 ((𝜑𝑑 ∈ ℝ) → (∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
102101rexlimdva 3152 . 2 (𝜑 → (∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐))
10351, 102impbid 211 1 (𝜑 → (∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  wss 3910   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051   · cmul 11056  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cn 12153  +crp 12915  MetOpencmopn 20786  NrmCVeccnv 29526  BaseSetcba 29528  normCVcnmcv 29532  IndMetcims 29533   normOpOLD cnmoo 29683   BLnOp cblo 29684  CBanccbn 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-dc 10382  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-lm 22580  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-cfil 24619  df-cau 24620  df-cmet 24621  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-lno 29686  df-nmoo 29687  df-blo 29688  df-0o 29689  df-cbn 29805
This theorem is referenced by:  ubth  29815
  Copyright terms: Public domain W3C validator