MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem2 Structured version   Visualization version   GIF version

Theorem ubthlem2 30557
Description: Lemma for ubth 30559. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴𝐾, for any 𝑥𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥𝐵(𝑃, 𝑅) and 𝑃𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
ubthlem.10 (𝜑𝐾 ∈ ℕ)
ubthlem.11 (𝜑𝑃𝑋)
ubthlem.12 (𝜑𝑅 ∈ ℝ+)
ubthlem.13 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
Assertion
Ref Expression
ubthlem2 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Distinct variable groups:   𝑘,𝑐,𝑥,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑥,𝑧   𝑘,𝐽,𝑡,𝑥   𝑘,𝑑,𝑡,𝑥,𝑧,𝐾   𝑐,𝑑,𝑁,𝑘,𝑡,𝑥,𝑧   𝑡,𝑃,𝑧   𝜑,𝑐,𝑘,𝑡,𝑥   𝑅,𝑑,𝑡,𝑥,𝑧   𝑇,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧   𝑈,𝑐,𝑑,𝑡,𝑥,𝑧   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑑)   𝐴(𝑡,𝑑)   𝐷(𝑑)   𝑃(𝑥,𝑘,𝑐,𝑑)   𝑅(𝑘,𝑐)   𝑈(𝑘)   𝐽(𝑧,𝑐,𝑑)   𝐾(𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem2
StepHypRef Expression
1 ubthlem.10 . . . . . 6 (𝜑𝐾 ∈ ℕ)
21nnrpd 13021 . . . . 5 (𝜑𝐾 ∈ ℝ+)
32, 2rpaddcld 13038 . . . 4 (𝜑 → (𝐾 + 𝐾) ∈ ℝ+)
4 ubthlem.12 . . . 4 (𝜑𝑅 ∈ ℝ+)
53, 4rpdivcld 13040 . . 3 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ+)
65rpred 13023 . 2 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ)
7 oveq2 7420 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑃𝐷𝑧) = (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))))
87breq1d 5158 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅))
9 eleq1 2820 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑧 ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
108, 9imbi12d 344 . . . . . . . 8 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)) ↔ ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾))))
11 ubthlem.13 . . . . . . . . . 10 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
12 rabss 4069 . . . . . . . . . 10 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1311, 12sylib 217 . . . . . . . . 9 (𝜑 → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1413ad2antrr 723 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
15 ubthlem.5 . . . . . . . . . . 11 𝑈 ∈ CBan
16 bnnv 30552 . . . . . . . . . . 11 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1715, 16ax-mp 5 . . . . . . . . . 10 𝑈 ∈ NrmCVec
1817a1i 11 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑈 ∈ NrmCVec)
19 ubthlem.11 . . . . . . . . . 10 (𝜑𝑃𝑋)
2019ad2antrr 723 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑃𝑋)
214ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2221rpcnd 13025 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℂ)
23 simpr 484 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑥𝑋)
24 ubth.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
25 eqid 2731 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
2624, 25nvscl 30312 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
2718, 22, 23, 26syl3anc 1370 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
28 eqid 2731 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
2924, 28nvgcl 30306 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3018, 20, 27, 29syl3anc 1370 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3110, 14, 30rspcdva 3613 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
32 ubthlem.3 . . . . . . . . . . . . . . . 16 𝐷 = (IndMet‘𝑈)
3324, 32cbncms 30551 . . . . . . . . . . . . . . 15 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
3415, 33ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (CMet‘𝑋)
35 cmetmet 25134 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
36 metxmet 24160 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3734, 35, 36mp2b 10 . . . . . . . . . . . . 13 𝐷 ∈ (∞Met‘𝑋)
3837a1i 11 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
39 xmetsym 24173 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
4038, 20, 30, 39syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
41 eqid 2731 . . . . . . . . . . . . 13 ( −𝑣𝑈) = ( −𝑣𝑈)
42 eqid 2731 . . . . . . . . . . . . 13 (normCV𝑈) = (normCV𝑈)
4324, 41, 42, 32imsdval 30372 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4418, 30, 20, 43syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4524, 28, 41nvpncan2 30339 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4618, 20, 27, 45syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4746fveq2d 6895 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4840, 44, 473eqtrd 2775 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4921rprege0d 13030 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
5024, 25, 42nvsge0 30350 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5118, 49, 23, 50syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5248, 51eqtrd 2771 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = (𝑅 · ((normCV𝑈)‘𝑥)))
5322mulridd 11238 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · 1) = 𝑅)
5453eqcomd 2737 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 = (𝑅 · 1))
5552, 54breq12d 5161 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
5624, 42nvcl 30347 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5717, 56mpan 687 . . . . . . . . . 10 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
5857adantl 481 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
59 1red 11222 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 1 ∈ ℝ)
6058, 59, 21lemul2d 13067 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
6155, 60bitr4d 282 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ ((normCV𝑈)‘𝑥) ≤ 1))
62 breq2 5152 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6362ralbidv 3176 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6463rabbidv 3439 . . . . . . . . . . . 12 (𝑘 = 𝐾 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
65 ubthlem.9 . . . . . . . . . . . 12 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
6624fvexi 6905 . . . . . . . . . . . . 13 𝑋 ∈ V
6766rabex 5332 . . . . . . . . . . . 12 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ∈ V
6864, 65, 67fvmpt 6998 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
691, 68syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
7069eleq2d 2818 . . . . . . . . 9 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾}))
71 2fveq3 6896 . . . . . . . . . . . 12 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))))
7271breq1d 5158 . . . . . . . . . . 11 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7372ralbidv 3176 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7473elrab 3683 . . . . . . . . 9 ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7570, 74bitrdi 287 . . . . . . . 8 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7675ad2antrr 723 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7731, 61, 763imtr3d 293 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
78 rsp 3243 . . . . . . . . . 10 (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑡𝑇 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7978com12 32 . . . . . . . . 9 (𝑡𝑇 → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
8079ad2antlr 724 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
81 xmet0 24168 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
8237, 19, 81sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑃𝐷𝑃) = 0)
834rpge0d 13027 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
8482, 83eqbrtrd 5170 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃𝐷𝑃) ≤ 𝑅)
85 oveq2 7420 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑃 → (𝑃𝐷𝑧) = (𝑃𝐷𝑃))
8685breq1d 5158 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑃 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑃) ≤ 𝑅))
8786elrab 3683 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) ≤ 𝑅))
8819, 84, 87sylanbrc 582 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
8911, 88sseldd 3983 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐴𝐾))
9089, 69eleqtrd 2834 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
91 2fveq3 6896 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑃 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑃)))
9291breq1d 5158 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑃 → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9392ralbidv 3176 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑃 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9493elrab 3683 . . . . . . . . . . . . . . 15 (𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9590, 94sylib 217 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9695simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9796r19.21bi 3247 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9897adantr 480 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
99 ubthlem.6 . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
100 ubthlem.7 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
101100sselda 3982 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
102 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (IndMet‘𝑊) = (IndMet‘𝑊)
103 ubthlem.4 . . . . . . . . . . . . . . . . . . 19 𝐽 = (MetOpen‘𝐷)
104 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
105 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
10632, 102, 103, 104, 105, 17, 99blocn2 30494 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
107103mopntopon 24265 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10837, 107ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ (TopOn‘𝑋)
109 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (BaseSet‘𝑊) = (BaseSet‘𝑊)
110109, 102imsxmet 30378 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
111104mopntopon 24265 . . . . . . . . . . . . . . . . . . . 20 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
11299, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
113 iscncl 23093 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
114108, 112, 113mp2an 689 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
115106, 114sylib 217 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
116101, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
117116simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
118117adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡:𝑋⟶(BaseSet‘𝑊))
119118, 30ffvelcdmd 7087 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊))
120 ubth.2 . . . . . . . . . . . . . 14 𝑁 = (normCV𝑊)
121109, 120nvcl 30347 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
12299, 119, 121sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
123118, 20ffvelcdmd 7087 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑃) ∈ (BaseSet‘𝑊))
124109, 120nvcl 30347 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
12599, 123, 124sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
1261nnred 12234 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
127126ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐾 ∈ ℝ)
128 le2add 11703 . . . . . . . . . . . 12 ((((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ ∧ (𝑁‘(𝑡𝑃)) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
129122, 125, 127, 127, 128syl22anc 836 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13098, 129mpan2d 691 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13146fveq2d 6895 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)))
13299a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑊 ∈ NrmCVec)
133 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
134133, 105bloln 30470 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡 ∈ (𝑈 LnOp 𝑊))
13517, 99, 134mp3an12 1450 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝑈 LnOp 𝑊))
136101, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 LnOp 𝑊))
137136adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡 ∈ (𝑈 LnOp 𝑊))
138 eqid 2731 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
13924, 41, 138, 133lnosub 30445 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋)) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
14018, 132, 137, 30, 20, 139syl32anc 1377 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
141 eqid 2731 . . . . . . . . . . . . . . . . 17 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
14224, 25, 141, 133lnomul 30446 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑅 ∈ ℂ ∧ 𝑥𝑋)) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
14318, 132, 137, 22, 23, 142syl32anc 1377 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
144131, 140, 1433eqtr3d 2779 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
145144fveq2d 6895 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))))
146117ffvelcdmda 7086 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
147109, 141, 120nvsge0 30350 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
148132, 49, 146, 147syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
149145, 148eqtrd 2771 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑅 · (𝑁‘(𝑡𝑥))))
150109, 138, 120nvmtri 30357 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊) ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
151132, 119, 123, 150syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
152149, 151eqbrtrrd 5172 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
15321rpred 13023 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ)
154109, 120nvcl 30347 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
15599, 146, 154sylancr 586 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
156153, 155remulcld 11251 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ)
157122, 125readdcld 11250 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ)
1583rpred 13023 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 𝐾) ∈ ℝ)
159158ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝐾 + 𝐾) ∈ ℝ)
160 letr 11315 . . . . . . . . . . . 12 (((𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ ∧ (𝐾 + 𝐾) ∈ ℝ) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
161156, 157, 159, 160syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
162152, 161mpand 692 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
163130, 162syld 47 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
164155, 159, 21lemuldiv2d 13073 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾) ↔ (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
165163, 164sylibd 238 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16680, 165syld 47 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
167166adantld 490 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾) → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16877, 167syld 47 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
169168ralrimiva 3145 . . . 4 ((𝜑𝑡𝑇) → ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
1705rpxrd 13024 . . . . . 6 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
171170adantr 480 . . . . 5 ((𝜑𝑡𝑇) → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
172 eqid 2731 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
17324, 109, 42, 120, 172, 17, 99nmoubi 30458 . . . . 5 ((𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
174117, 171, 173syl2anc 583 . . . 4 ((𝜑𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
175169, 174mpbird 257 . . 3 ((𝜑𝑡𝑇) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
176175ralrimiva 3145 . 2 (𝜑 → ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
177 brralrspcev 5208 . 2 ((((𝐾 + 𝐾) / 𝑅) ∈ ℝ ∧ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
1786, 176, 177syl2anc 583 1 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {crab 3431  wss 3948   class class class wbr 5148  cmpt 5231  ccnv 5675  cima 5679  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121  *cxr 11254  cle 11256   / cdiv 11878  cn 12219  +crp 12981  ∞Metcxmet 21218  Metcmet 21219  MetOpencmopn 21223  TopOnctopon 22732  Clsdccld 22840   Cn ccn 23048  CMetccmet 25102  NrmCVeccnv 30270   +𝑣 cpv 30271  BaseSetcba 30272   ·𝑠OLD cns 30273  𝑣 cnsb 30275  normCVcnmcv 30276  IndMetcims 30277   LnOp clno 30426   normOpOLD cnmoo 30427   BLnOp cblo 30428  CBanccbn 30548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-topgen 17396  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-top 22716  df-topon 22733  df-bases 22769  df-cld 22843  df-cn 23051  df-cnp 23052  df-cmet 25105  df-grpo 30179  df-gid 30180  df-ginv 30181  df-gdiv 30182  df-ablo 30231  df-vc 30245  df-nv 30278  df-va 30281  df-ba 30282  df-sm 30283  df-0v 30284  df-vs 30285  df-nmcv 30286  df-ims 30287  df-lno 30430  df-nmoo 30431  df-blo 30432  df-0o 30433  df-cbn 30549
This theorem is referenced by:  ubthlem3  30558
  Copyright terms: Public domain W3C validator