MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem2 Structured version   Visualization version   GIF version

Theorem ubthlem2 30903
Description: Lemma for ubth 30905. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴𝐾, for any 𝑥𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥𝐵(𝑃, 𝑅) and 𝑃𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
ubthlem.10 (𝜑𝐾 ∈ ℕ)
ubthlem.11 (𝜑𝑃𝑋)
ubthlem.12 (𝜑𝑅 ∈ ℝ+)
ubthlem.13 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
Assertion
Ref Expression
ubthlem2 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Distinct variable groups:   𝑘,𝑐,𝑥,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑥,𝑧   𝑘,𝐽,𝑡,𝑥   𝑘,𝑑,𝑡,𝑥,𝑧,𝐾   𝑐,𝑑,𝑁,𝑘,𝑡,𝑥,𝑧   𝑡,𝑃,𝑧   𝜑,𝑐,𝑘,𝑡,𝑥   𝑅,𝑑,𝑡,𝑥,𝑧   𝑇,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧   𝑈,𝑐,𝑑,𝑡,𝑥,𝑧   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑑)   𝐴(𝑡,𝑑)   𝐷(𝑑)   𝑃(𝑥,𝑘,𝑐,𝑑)   𝑅(𝑘,𝑐)   𝑈(𝑘)   𝐽(𝑧,𝑐,𝑑)   𝐾(𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem2
StepHypRef Expression
1 ubthlem.10 . . . . . 6 (𝜑𝐾 ∈ ℕ)
21nnrpd 13097 . . . . 5 (𝜑𝐾 ∈ ℝ+)
32, 2rpaddcld 13114 . . . 4 (𝜑 → (𝐾 + 𝐾) ∈ ℝ+)
4 ubthlem.12 . . . 4 (𝜑𝑅 ∈ ℝ+)
53, 4rpdivcld 13116 . . 3 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ+)
65rpred 13099 . 2 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ)
7 oveq2 7456 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑃𝐷𝑧) = (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))))
87breq1d 5176 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅))
9 eleq1 2832 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑧 ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
108, 9imbi12d 344 . . . . . . . 8 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)) ↔ ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾))))
11 ubthlem.13 . . . . . . . . . 10 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
12 rabss 4095 . . . . . . . . . 10 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1311, 12sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1413ad2antrr 725 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
15 ubthlem.5 . . . . . . . . . . 11 𝑈 ∈ CBan
16 bnnv 30898 . . . . . . . . . . 11 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1715, 16ax-mp 5 . . . . . . . . . 10 𝑈 ∈ NrmCVec
1817a1i 11 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑈 ∈ NrmCVec)
19 ubthlem.11 . . . . . . . . . 10 (𝜑𝑃𝑋)
2019ad2antrr 725 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑃𝑋)
214ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2221rpcnd 13101 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℂ)
23 simpr 484 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑥𝑋)
24 ubth.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
25 eqid 2740 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
2624, 25nvscl 30658 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
2718, 22, 23, 26syl3anc 1371 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
28 eqid 2740 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
2924, 28nvgcl 30652 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3018, 20, 27, 29syl3anc 1371 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3110, 14, 30rspcdva 3636 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
32 ubthlem.3 . . . . . . . . . . . . . . . 16 𝐷 = (IndMet‘𝑈)
3324, 32cbncms 30897 . . . . . . . . . . . . . . 15 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
3415, 33ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (CMet‘𝑋)
35 cmetmet 25339 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
36 metxmet 24365 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3734, 35, 36mp2b 10 . . . . . . . . . . . . 13 𝐷 ∈ (∞Met‘𝑋)
3837a1i 11 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
39 xmetsym 24378 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
4038, 20, 30, 39syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
41 eqid 2740 . . . . . . . . . . . . 13 ( −𝑣𝑈) = ( −𝑣𝑈)
42 eqid 2740 . . . . . . . . . . . . 13 (normCV𝑈) = (normCV𝑈)
4324, 41, 42, 32imsdval 30718 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4418, 30, 20, 43syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4524, 28, 41nvpncan2 30685 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4618, 20, 27, 45syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4746fveq2d 6924 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4840, 44, 473eqtrd 2784 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4921rprege0d 13106 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
5024, 25, 42nvsge0 30696 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5118, 49, 23, 50syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5248, 51eqtrd 2780 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = (𝑅 · ((normCV𝑈)‘𝑥)))
5322mulridd 11307 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · 1) = 𝑅)
5453eqcomd 2746 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 = (𝑅 · 1))
5552, 54breq12d 5179 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
5624, 42nvcl 30693 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5717, 56mpan 689 . . . . . . . . . 10 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
5857adantl 481 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
59 1red 11291 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 1 ∈ ℝ)
6058, 59, 21lemul2d 13143 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
6155, 60bitr4d 282 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ ((normCV𝑈)‘𝑥) ≤ 1))
62 breq2 5170 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6362ralbidv 3184 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6463rabbidv 3451 . . . . . . . . . . . 12 (𝑘 = 𝐾 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
65 ubthlem.9 . . . . . . . . . . . 12 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
6624fvexi 6934 . . . . . . . . . . . . 13 𝑋 ∈ V
6766rabex 5357 . . . . . . . . . . . 12 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ∈ V
6864, 65, 67fvmpt 7029 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
691, 68syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
7069eleq2d 2830 . . . . . . . . 9 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾}))
71 2fveq3 6925 . . . . . . . . . . . 12 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))))
7271breq1d 5176 . . . . . . . . . . 11 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7372ralbidv 3184 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7473elrab 3708 . . . . . . . . 9 ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7570, 74bitrdi 287 . . . . . . . 8 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7675ad2antrr 725 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7731, 61, 763imtr3d 293 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
78 rsp 3253 . . . . . . . . . 10 (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑡𝑇 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7978com12 32 . . . . . . . . 9 (𝑡𝑇 → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
8079ad2antlr 726 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
81 xmet0 24373 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
8237, 19, 81sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑃𝐷𝑃) = 0)
834rpge0d 13103 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
8482, 83eqbrtrd 5188 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃𝐷𝑃) ≤ 𝑅)
85 oveq2 7456 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑃 → (𝑃𝐷𝑧) = (𝑃𝐷𝑃))
8685breq1d 5176 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑃 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑃) ≤ 𝑅))
8786elrab 3708 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) ≤ 𝑅))
8819, 84, 87sylanbrc 582 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
8911, 88sseldd 4009 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐴𝐾))
9089, 69eleqtrd 2846 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
91 2fveq3 6925 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑃 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑃)))
9291breq1d 5176 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑃 → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9392ralbidv 3184 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑃 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9493elrab 3708 . . . . . . . . . . . . . . 15 (𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9590, 94sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9695simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9796r19.21bi 3257 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9897adantr 480 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
99 ubthlem.6 . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
100 ubthlem.7 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
101100sselda 4008 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
102 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (IndMet‘𝑊) = (IndMet‘𝑊)
103 ubthlem.4 . . . . . . . . . . . . . . . . . . 19 𝐽 = (MetOpen‘𝐷)
104 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
105 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
10632, 102, 103, 104, 105, 17, 99blocn2 30840 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
107103mopntopon 24470 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10837, 107ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ (TopOn‘𝑋)
109 eqid 2740 . . . . . . . . . . . . . . . . . . . . 21 (BaseSet‘𝑊) = (BaseSet‘𝑊)
110109, 102imsxmet 30724 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
111104mopntopon 24470 . . . . . . . . . . . . . . . . . . . 20 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
11299, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
113 iscncl 23298 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
114108, 112, 113mp2an 691 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
115106, 114sylib 218 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
116101, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
117116simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
118117adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡:𝑋⟶(BaseSet‘𝑊))
119118, 30ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊))
120 ubth.2 . . . . . . . . . . . . . 14 𝑁 = (normCV𝑊)
121109, 120nvcl 30693 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
12299, 119, 121sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
123118, 20ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑃) ∈ (BaseSet‘𝑊))
124109, 120nvcl 30693 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
12599, 123, 124sylancr 586 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
1261nnred 12308 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
127126ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐾 ∈ ℝ)
128 le2add 11772 . . . . . . . . . . . 12 ((((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ ∧ (𝑁‘(𝑡𝑃)) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
129122, 125, 127, 127, 128syl22anc 838 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13098, 129mpan2d 693 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13146fveq2d 6924 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)))
13299a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑊 ∈ NrmCVec)
133 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
134133, 105bloln 30816 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡 ∈ (𝑈 LnOp 𝑊))
13517, 99, 134mp3an12 1451 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝑈 LnOp 𝑊))
136101, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 LnOp 𝑊))
137136adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡 ∈ (𝑈 LnOp 𝑊))
138 eqid 2740 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
13924, 41, 138, 133lnosub 30791 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋)) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
14018, 132, 137, 30, 20, 139syl32anc 1378 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
141 eqid 2740 . . . . . . . . . . . . . . . . 17 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
14224, 25, 141, 133lnomul 30792 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑅 ∈ ℂ ∧ 𝑥𝑋)) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
14318, 132, 137, 22, 23, 142syl32anc 1378 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
144131, 140, 1433eqtr3d 2788 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
145144fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))))
146117ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
147109, 141, 120nvsge0 30696 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
148132, 49, 146, 147syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
149145, 148eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑅 · (𝑁‘(𝑡𝑥))))
150109, 138, 120nvmtri 30703 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊) ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
151132, 119, 123, 150syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
152149, 151eqbrtrrd 5190 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
15321rpred 13099 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ)
154109, 120nvcl 30693 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
15599, 146, 154sylancr 586 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
156153, 155remulcld 11320 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ)
157122, 125readdcld 11319 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ)
1583rpred 13099 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 𝐾) ∈ ℝ)
159158ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝐾 + 𝐾) ∈ ℝ)
160 letr 11384 . . . . . . . . . . . 12 (((𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ ∧ (𝐾 + 𝐾) ∈ ℝ) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
161156, 157, 159, 160syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
162152, 161mpand 694 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
163130, 162syld 47 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
164155, 159, 21lemuldiv2d 13149 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾) ↔ (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
165163, 164sylibd 239 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16680, 165syld 47 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
167166adantld 490 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾) → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16877, 167syld 47 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
169168ralrimiva 3152 . . . 4 ((𝜑𝑡𝑇) → ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
1705rpxrd 13100 . . . . . 6 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
171170adantr 480 . . . . 5 ((𝜑𝑡𝑇) → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
172 eqid 2740 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
17324, 109, 42, 120, 172, 17, 99nmoubi 30804 . . . . 5 ((𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
174117, 171, 173syl2anc 583 . . . 4 ((𝜑𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
175169, 174mpbird 257 . . 3 ((𝜑𝑡𝑇) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
176175ralrimiva 3152 . 2 (𝜑 → ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
177 brralrspcev 5226 . 2 ((((𝐾 + 𝐾) / 𝑅) ∈ ℝ ∧ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
1786, 176, 177syl2anc 583 1 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323  cle 11325   / cdiv 11947  cn 12293  +crp 13057  ∞Metcxmet 21372  Metcmet 21373  MetOpencmopn 21377  TopOnctopon 22937  Clsdccld 23045   Cn ccn 23253  CMetccmet 25307  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623   LnOp clno 30772   normOpOLD cnmoo 30773   BLnOp cblo 30774  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-lno 30776  df-nmoo 30777  df-blo 30778  df-0o 30779  df-cbn 30895
This theorem is referenced by:  ubthlem3  30904
  Copyright terms: Public domain W3C validator