MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem2 Structured version   Visualization version   GIF version

Theorem ubthlem2 30800
Description: Lemma for ubth 30802. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴𝐾, for any 𝑥𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥𝐵(𝑃, 𝑅) and 𝑃𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
ubthlem.10 (𝜑𝐾 ∈ ℕ)
ubthlem.11 (𝜑𝑃𝑋)
ubthlem.12 (𝜑𝑅 ∈ ℝ+)
ubthlem.13 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
Assertion
Ref Expression
ubthlem2 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Distinct variable groups:   𝑘,𝑐,𝑥,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑥,𝑧   𝑘,𝐽,𝑡,𝑥   𝑘,𝑑,𝑡,𝑥,𝑧,𝐾   𝑐,𝑑,𝑁,𝑘,𝑡,𝑥,𝑧   𝑡,𝑃,𝑧   𝜑,𝑐,𝑘,𝑡,𝑥   𝑅,𝑑,𝑡,𝑥,𝑧   𝑇,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧   𝑈,𝑐,𝑑,𝑡,𝑥,𝑧   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑑)   𝐴(𝑡,𝑑)   𝐷(𝑑)   𝑃(𝑥,𝑘,𝑐,𝑑)   𝑅(𝑘,𝑐)   𝑈(𝑘)   𝐽(𝑧,𝑐,𝑑)   𝐾(𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem2
StepHypRef Expression
1 ubthlem.10 . . . . . 6 (𝜑𝐾 ∈ ℕ)
21nnrpd 12993 . . . . 5 (𝜑𝐾 ∈ ℝ+)
32, 2rpaddcld 13010 . . . 4 (𝜑 → (𝐾 + 𝐾) ∈ ℝ+)
4 ubthlem.12 . . . 4 (𝜑𝑅 ∈ ℝ+)
53, 4rpdivcld 13012 . . 3 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ+)
65rpred 12995 . 2 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ)
7 oveq2 7395 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑃𝐷𝑧) = (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))))
87breq1d 5117 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅))
9 eleq1 2816 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑧 ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
108, 9imbi12d 344 . . . . . . . 8 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)) ↔ ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾))))
11 ubthlem.13 . . . . . . . . . 10 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
12 rabss 4035 . . . . . . . . . 10 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1311, 12sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1413ad2antrr 726 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
15 ubthlem.5 . . . . . . . . . . 11 𝑈 ∈ CBan
16 bnnv 30795 . . . . . . . . . . 11 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1715, 16ax-mp 5 . . . . . . . . . 10 𝑈 ∈ NrmCVec
1817a1i 11 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑈 ∈ NrmCVec)
19 ubthlem.11 . . . . . . . . . 10 (𝜑𝑃𝑋)
2019ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑃𝑋)
214ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2221rpcnd 12997 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℂ)
23 simpr 484 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑥𝑋)
24 ubth.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
25 eqid 2729 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
2624, 25nvscl 30555 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
2718, 22, 23, 26syl3anc 1373 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
28 eqid 2729 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
2924, 28nvgcl 30549 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3018, 20, 27, 29syl3anc 1373 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3110, 14, 30rspcdva 3589 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
32 ubthlem.3 . . . . . . . . . . . . . . . 16 𝐷 = (IndMet‘𝑈)
3324, 32cbncms 30794 . . . . . . . . . . . . . . 15 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
3415, 33ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (CMet‘𝑋)
35 cmetmet 25186 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
36 metxmet 24222 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3734, 35, 36mp2b 10 . . . . . . . . . . . . 13 𝐷 ∈ (∞Met‘𝑋)
3837a1i 11 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
39 xmetsym 24235 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
4038, 20, 30, 39syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
41 eqid 2729 . . . . . . . . . . . . 13 ( −𝑣𝑈) = ( −𝑣𝑈)
42 eqid 2729 . . . . . . . . . . . . 13 (normCV𝑈) = (normCV𝑈)
4324, 41, 42, 32imsdval 30615 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4418, 30, 20, 43syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4524, 28, 41nvpncan2 30582 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4618, 20, 27, 45syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4746fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4840, 44, 473eqtrd 2768 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4921rprege0d 13002 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
5024, 25, 42nvsge0 30593 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5118, 49, 23, 50syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5248, 51eqtrd 2764 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = (𝑅 · ((normCV𝑈)‘𝑥)))
5322mulridd 11191 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · 1) = 𝑅)
5453eqcomd 2735 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 = (𝑅 · 1))
5552, 54breq12d 5120 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
5624, 42nvcl 30590 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5717, 56mpan 690 . . . . . . . . . 10 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
5857adantl 481 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
59 1red 11175 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 1 ∈ ℝ)
6058, 59, 21lemul2d 13039 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
6155, 60bitr4d 282 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ ((normCV𝑈)‘𝑥) ≤ 1))
62 breq2 5111 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6362ralbidv 3156 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6463rabbidv 3413 . . . . . . . . . . . 12 (𝑘 = 𝐾 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
65 ubthlem.9 . . . . . . . . . . . 12 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
6624fvexi 6872 . . . . . . . . . . . . 13 𝑋 ∈ V
6766rabex 5294 . . . . . . . . . . . 12 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ∈ V
6864, 65, 67fvmpt 6968 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
691, 68syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
7069eleq2d 2814 . . . . . . . . 9 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾}))
71 2fveq3 6863 . . . . . . . . . . . 12 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))))
7271breq1d 5117 . . . . . . . . . . 11 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7372ralbidv 3156 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7473elrab 3659 . . . . . . . . 9 ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7570, 74bitrdi 287 . . . . . . . 8 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7675ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7731, 61, 763imtr3d 293 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
78 rsp 3225 . . . . . . . . . 10 (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑡𝑇 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7978com12 32 . . . . . . . . 9 (𝑡𝑇 → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
8079ad2antlr 727 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
81 xmet0 24230 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
8237, 19, 81sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑃𝐷𝑃) = 0)
834rpge0d 12999 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
8482, 83eqbrtrd 5129 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃𝐷𝑃) ≤ 𝑅)
85 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑃 → (𝑃𝐷𝑧) = (𝑃𝐷𝑃))
8685breq1d 5117 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑃 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑃) ≤ 𝑅))
8786elrab 3659 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) ≤ 𝑅))
8819, 84, 87sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
8911, 88sseldd 3947 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐴𝐾))
9089, 69eleqtrd 2830 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
91 2fveq3 6863 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑃 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑃)))
9291breq1d 5117 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑃 → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9392ralbidv 3156 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑃 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9493elrab 3659 . . . . . . . . . . . . . . 15 (𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9590, 94sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9695simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9796r19.21bi 3229 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9897adantr 480 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
99 ubthlem.6 . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
100 ubthlem.7 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
101100sselda 3946 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
102 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (IndMet‘𝑊) = (IndMet‘𝑊)
103 ubthlem.4 . . . . . . . . . . . . . . . . . . 19 𝐽 = (MetOpen‘𝐷)
104 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
105 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
10632, 102, 103, 104, 105, 17, 99blocn2 30737 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
107103mopntopon 24327 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10837, 107ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ (TopOn‘𝑋)
109 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (BaseSet‘𝑊) = (BaseSet‘𝑊)
110109, 102imsxmet 30621 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
111104mopntopon 24327 . . . . . . . . . . . . . . . . . . . 20 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
11299, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
113 iscncl 23156 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
114108, 112, 113mp2an 692 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
115106, 114sylib 218 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
116101, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
117116simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
118117adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡:𝑋⟶(BaseSet‘𝑊))
119118, 30ffvelcdmd 7057 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊))
120 ubth.2 . . . . . . . . . . . . . 14 𝑁 = (normCV𝑊)
121109, 120nvcl 30590 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
12299, 119, 121sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
123118, 20ffvelcdmd 7057 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑃) ∈ (BaseSet‘𝑊))
124109, 120nvcl 30590 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
12599, 123, 124sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
1261nnred 12201 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
127126ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐾 ∈ ℝ)
128 le2add 11660 . . . . . . . . . . . 12 ((((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ ∧ (𝑁‘(𝑡𝑃)) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
129122, 125, 127, 127, 128syl22anc 838 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13098, 129mpan2d 694 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13146fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)))
13299a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑊 ∈ NrmCVec)
133 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
134133, 105bloln 30713 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡 ∈ (𝑈 LnOp 𝑊))
13517, 99, 134mp3an12 1453 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝑈 LnOp 𝑊))
136101, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 LnOp 𝑊))
137136adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡 ∈ (𝑈 LnOp 𝑊))
138 eqid 2729 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
13924, 41, 138, 133lnosub 30688 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋)) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
14018, 132, 137, 30, 20, 139syl32anc 1380 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
141 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
14224, 25, 141, 133lnomul 30689 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑅 ∈ ℂ ∧ 𝑥𝑋)) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
14318, 132, 137, 22, 23, 142syl32anc 1380 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
144131, 140, 1433eqtr3d 2772 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
145144fveq2d 6862 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))))
146117ffvelcdmda 7056 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
147109, 141, 120nvsge0 30593 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
148132, 49, 146, 147syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
149145, 148eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑅 · (𝑁‘(𝑡𝑥))))
150109, 138, 120nvmtri 30600 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊) ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
151132, 119, 123, 150syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
152149, 151eqbrtrrd 5131 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
15321rpred 12995 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ)
154109, 120nvcl 30590 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
15599, 146, 154sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
156153, 155remulcld 11204 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ)
157122, 125readdcld 11203 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ)
1583rpred 12995 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 𝐾) ∈ ℝ)
159158ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝐾 + 𝐾) ∈ ℝ)
160 letr 11268 . . . . . . . . . . . 12 (((𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ ∧ (𝐾 + 𝐾) ∈ ℝ) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
161156, 157, 159, 160syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
162152, 161mpand 695 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
163130, 162syld 47 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
164155, 159, 21lemuldiv2d 13045 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾) ↔ (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
165163, 164sylibd 239 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16680, 165syld 47 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
167166adantld 490 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾) → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16877, 167syld 47 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
169168ralrimiva 3125 . . . 4 ((𝜑𝑡𝑇) → ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
1705rpxrd 12996 . . . . . 6 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
171170adantr 480 . . . . 5 ((𝜑𝑡𝑇) → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
172 eqid 2729 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
17324, 109, 42, 120, 172, 17, 99nmoubi 30701 . . . . 5 ((𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
174117, 171, 173syl2anc 584 . . . 4 ((𝜑𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
175169, 174mpbird 257 . . 3 ((𝜑𝑡𝑇) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
176175ralrimiva 3125 . 2 (𝜑 → ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
177 brralrspcev 5167 . 2 ((((𝐾 + 𝐾) / 𝑅) ∈ ℝ ∧ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
1786, 176, 177syl2anc 584 1 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207  cle 11209   / cdiv 11835  cn 12186  +crp 12951  ∞Metcxmet 21249  Metcmet 21250  MetOpencmopn 21254  TopOnctopon 22797  Clsdccld 22903   Cn ccn 23111  CMetccmet 25154  NrmCVeccnv 30513   +𝑣 cpv 30514  BaseSetcba 30515   ·𝑠OLD cns 30516  𝑣 cnsb 30518  normCVcnmcv 30519  IndMetcims 30520   LnOp clno 30669   normOpOLD cnmoo 30670   BLnOp cblo 30671  CBanccbn 30791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cn 23114  df-cnp 23115  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-lno 30673  df-nmoo 30674  df-blo 30675  df-0o 30676  df-cbn 30792
This theorem is referenced by:  ubthlem3  30801
  Copyright terms: Public domain W3C validator