Proof of Theorem ubthlem2
Step | Hyp | Ref
| Expression |
1 | | ubthlem.10 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
2 | 1 | nnrpd 12779 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
3 | 2, 2 | rpaddcld 12796 |
. . . 4
⊢ (𝜑 → (𝐾 + 𝐾) ∈
ℝ+) |
4 | | ubthlem.12 |
. . . 4
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
5 | 3, 4 | rpdivcld 12798 |
. . 3
⊢ (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈
ℝ+) |
6 | 5 | rpred 12781 |
. 2
⊢ (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ) |
7 | | oveq2 7292 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑃𝐷𝑧) = (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) |
8 | 7 | breq1d 5085 |
. . . . . . . . 9
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅)) |
9 | | eleq1 2827 |
. . . . . . . . 9
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑧 ∈ (𝐴‘𝐾) ↔ (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾))) |
10 | 8, 9 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾)) ↔ ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾)))) |
11 | | ubthlem.13 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾)) |
12 | | rabss 4006 |
. . . . . . . . . 10
⊢ ({𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾) ↔ ∀𝑧 ∈ 𝑋 ((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾))) |
13 | 11, 12 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾))) |
14 | 13 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾))) |
15 | | ubthlem.5 |
. . . . . . . . . . 11
⊢ 𝑈 ∈ CBan |
16 | | bnnv 29237 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ CBan → 𝑈 ∈
NrmCVec) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑈 ∈ NrmCVec |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑈 ∈ NrmCVec) |
19 | | ubthlem.11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
20 | 19 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
21 | 4 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈
ℝ+) |
22 | 21 | rpcnd 12783 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℂ) |
23 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
24 | | ubth.1 |
. . . . . . . . . . 11
⊢ 𝑋 = (BaseSet‘𝑈) |
25 | | eqid 2739 |
. . . . . . . . . . 11
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
26 | 24, 25 | nvscl 28997 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) |
27 | 18, 22, 23, 26 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) |
28 | | eqid 2739 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
29 | 24, 28 | nvgcl 28991 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋) |
30 | 18, 20, 27, 29 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋) |
31 | 10, 14, 30 | rspcdva 3563 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾))) |
32 | | ubthlem.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 = (IndMet‘𝑈) |
33 | 24, 32 | cbncms 29236 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
34 | 15, 33 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ∈ (CMet‘𝑋) |
35 | | cmetmet 24459 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
36 | | metxmet 23496 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
37 | 34, 35, 36 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ (∞Met‘𝑋) |
38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
39 | | xmetsym 23509 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃)) |
40 | 38, 20, 30, 39 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃)) |
41 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
42 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
43 | 24, 41, 42, 32 | imsdval 29057 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑃( +𝑣
‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃) = ((normCV‘𝑈)‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃))) |
44 | 18, 30, 20, 43 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃) = ((normCV‘𝑈)‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃))) |
45 | 24, 28, 41 | nvpncan2 29024 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃) = (𝑅( ·𝑠OLD
‘𝑈)𝑥)) |
46 | 18, 20, 27, 45 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃) = (𝑅( ·𝑠OLD
‘𝑈)𝑥)) |
47 | 46 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥))) |
48 | 40, 44, 47 | 3eqtrd 2783 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥))) |
49 | 21 | rprege0d 12788 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) |
50 | 24, 25, 42 | nvsge0 29035 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅 · ((normCV‘𝑈)‘𝑥))) |
51 | 18, 49, 23, 50 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅 · ((normCV‘𝑈)‘𝑥))) |
52 | 48, 51 | eqtrd 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = (𝑅 · ((normCV‘𝑈)‘𝑥))) |
53 | 22 | mulid1d 11001 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 · 1) = 𝑅) |
54 | 53 | eqcomd 2745 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 = (𝑅 · 1)) |
55 | 52, 54 | breq12d 5088 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 ↔ (𝑅 · ((normCV‘𝑈)‘𝑥)) ≤ (𝑅 · 1))) |
56 | 24, 42 | nvcl 29032 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
57 | 17, 56 | mpan 687 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
58 | 57 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
59 | | 1red 10985 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ) |
60 | 58, 59, 21 | lemul2d 12825 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((normCV‘𝑈)‘𝑥) ≤ 1 ↔ (𝑅 · ((normCV‘𝑈)‘𝑥)) ≤ (𝑅 · 1))) |
61 | 55, 60 | bitr4d 281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 ↔ ((normCV‘𝑈)‘𝑥) ≤ 1)) |
62 | | breq2 5079 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐾 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝐾)) |
63 | 62 | ralbidv 3113 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐾 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾)) |
64 | 63 | rabbidv 3415 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
65 | | ubthlem.9 |
. . . . . . . . . . . 12
⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
66 | 24 | fvexi 6797 |
. . . . . . . . . . . . 13
⊢ 𝑋 ∈ V |
67 | 66 | rabex 5257 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾} ∈ V |
68 | 64, 65, 67 | fvmpt 6884 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ → (𝐴‘𝐾) = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
69 | 1, 68 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝐾) = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
70 | 69 | eleq2d 2825 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾) ↔ (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾})) |
71 | | 2fveq3 6788 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))))) |
72 | 71 | breq1d 5085 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → ((𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
73 | 72 | ralbidv 3113 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
74 | 73 | elrab 3625 |
. . . . . . . . 9
⊢ ((𝑃( +𝑣
‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾} ↔ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
75 | 70, 74 | bitrdi 287 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾) ↔ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾))) |
76 | 75 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾) ↔ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾))) |
77 | 31, 61, 76 | 3imtr3d 293 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((normCV‘𝑈)‘𝑥) ≤ 1 → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾))) |
78 | | rsp 3132 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑡 ∈ 𝑇 → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
79 | 78 | com12 32 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝑇 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
80 | 79 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
81 | | xmet0 23504 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃𝐷𝑃) = 0) |
82 | 37, 19, 81 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑃𝐷𝑃) = 0) |
83 | 4 | rpge0d 12785 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ≤ 𝑅) |
84 | 82, 83 | eqbrtrd 5097 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃𝐷𝑃) ≤ 𝑅) |
85 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑃 → (𝑃𝐷𝑧) = (𝑃𝐷𝑃)) |
86 | 85 | breq1d 5085 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑃 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑃) ≤ 𝑅)) |
87 | 86 | elrab 3625 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑃𝐷𝑃) ≤ 𝑅)) |
88 | 19, 84, 87 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}) |
89 | 11, 88 | sseldd 3923 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ (𝐴‘𝐾)) |
90 | 89, 69 | eleqtrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
91 | | 2fveq3 6788 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑃 → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘𝑃))) |
92 | 91 | breq1d 5085 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑃 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
93 | 92 | ralbidv 3113 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑃 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
94 | 93 | elrab 3625 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾} ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
95 | 90, 94 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
96 | 95 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) |
97 | 96 | r19.21bi 3135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) |
98 | 97 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) |
99 | | ubthlem.6 |
. . . . . . . . . . . . 13
⊢ 𝑊 ∈ NrmCVec |
100 | | ubthlem.7 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) |
101 | 100 | sselda 3922 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) |
102 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢
(IndMet‘𝑊) =
(IndMet‘𝑊) |
103 | | ubthlem.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 = (MetOpen‘𝐷) |
104 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢
(MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊)) |
105 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊) |
106 | 32, 102, 103, 104, 105, 17, 99 | blocn2 29179 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊)))) |
107 | 103 | mopntopon 23601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
108 | 37, 107 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 ∈ (TopOn‘𝑋) |
109 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
110 | 109, 102 | imsxmet 29063 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ NrmCVec →
(IndMet‘𝑊) ∈
(∞Met‘(BaseSet‘𝑊))) |
111 | 104 | mopntopon 23601 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((IndMet‘𝑊)
∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈
(TopOn‘(BaseSet‘𝑊))) |
112 | 99, 110, 111 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢
(MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)) |
113 | | iscncl 22429 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧
(MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽)))) |
114 | 108, 112,
113 | mp2an 689 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
115 | 106, 114 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
116 | 101, 115 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
117 | 116 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
118 | 117 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
119 | 118, 30 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ∈ (BaseSet‘𝑊)) |
120 | | ubth.2 |
. . . . . . . . . . . . . 14
⊢ 𝑁 =
(normCV‘𝑊) |
121 | 109, 120 | nvcl 29032 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ∈ ℝ) |
122 | 99, 119, 121 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ∈ ℝ) |
123 | 118, 20 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘𝑃) ∈ (BaseSet‘𝑊)) |
124 | 109, 120 | nvcl 29032 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑃)) ∈ ℝ) |
125 | 99, 123, 124 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑃)) ∈ ℝ) |
126 | 1 | nnred 11997 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
127 | 126 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ ℝ) |
128 | | le2add 11466 |
. . . . . . . . . . . 12
⊢ ((((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ∈ ℝ ∧ (𝑁‘(𝑡‘𝑃)) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾))) |
129 | 122, 125,
127, 127, 128 | syl22anc 836 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾))) |
130 | 98, 129 | mpan2d 691 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾))) |
131 | 46 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = (𝑡‘(𝑅( ·𝑠OLD
‘𝑈)𝑥))) |
132 | 99 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ NrmCVec) |
133 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) |
134 | 133, 105 | bloln 29155 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
135 | 17, 99, 134 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
136 | 101, 135 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
138 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (
−𝑣 ‘𝑊) = ( −𝑣
‘𝑊) |
139 | 24, 41, 138, 133 | lnosub 29130 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋)) → (𝑡‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) |
140 | 18, 132, 137, 30, 20, 139 | syl32anc 1377 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) |
141 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
142 | 24, 25, 141, 133 | lnomul 29131 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑅 ∈ ℂ ∧ 𝑥 ∈ 𝑋)) → (𝑡‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) |
143 | 18, 132, 137, 22, 23, 142 | syl32anc 1377 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) |
144 | 131, 140,
143 | 3eqtr3d 2787 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃)) = (𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) |
145 | 144 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) = (𝑁‘(𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥)))) |
146 | 117 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) |
147 | 109, 141,
120 | nvsge0 29035 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) = (𝑅 · (𝑁‘(𝑡‘𝑥)))) |
148 | 132, 49, 146, 147 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) = (𝑅 · (𝑁‘(𝑡‘𝑥)))) |
149 | 145, 148 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) = (𝑅 · (𝑁‘(𝑡‘𝑥)))) |
150 | 109, 138,
120 | nvmtri 29042 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ∈ (BaseSet‘𝑊) ∧ (𝑡‘𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃)))) |
151 | 132, 119,
123, 150 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃)))) |
152 | 149, 151 | eqbrtrrd 5099 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃)))) |
153 | 21 | rpred 12781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℝ) |
154 | 109, 120 | nvcl 29032 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
155 | 99, 146, 154 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
156 | 153, 155 | remulcld 11014 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ∈ ℝ) |
157 | 122, 125 | readdcld 11013 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∈ ℝ) |
158 | 3 | rpred 12781 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 + 𝐾) ∈ ℝ) |
159 | 158 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝐾 + 𝐾) ∈ ℝ) |
160 | | letr 11078 |
. . . . . . . . . . . 12
⊢ (((𝑅 · (𝑁‘(𝑡‘𝑥))) ∈ ℝ ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∈ ℝ ∧ (𝐾 + 𝐾) ∈ ℝ) → (((𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
161 | 156, 157,
159, 160 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
162 | 152, 161 | mpand 692 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
163 | 130, 162 | syld 47 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
164 | 155, 159,
21 | lemuldiv2d 12831 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾) ↔ (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
165 | 163, 164 | sylibd 238 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
166 | 80, 165 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
167 | 166 | adantld 491 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾) → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
168 | 77, 167 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
169 | 168 | ralrimiva 3104 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ∀𝑥 ∈ 𝑋 (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
170 | 5 | rpxrd 12782 |
. . . . . 6
⊢ (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈
ℝ*) |
171 | 170 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐾 + 𝐾) / 𝑅) ∈
ℝ*) |
172 | | eqid 2739 |
. . . . . 6
⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) |
173 | 24, 109, 42, 120, 172, 17, 99 | nmoubi 29143 |
. . . . 5
⊢ ((𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*) →
(((𝑈 normOpOLD
𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥 ∈ 𝑋 (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))) |
174 | 117, 171,
173 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥 ∈ 𝑋 (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))) |
175 | 169, 174 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) |
176 | 175 | ralrimiva 3104 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) |
177 | | brralrspcev 5135 |
. 2
⊢ ((((𝐾 + 𝐾) / 𝑅) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |
178 | 6, 176, 177 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |