MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem2 Structured version   Visualization version   GIF version

Theorem ubthlem2 30833
Description: Lemma for ubth 30835. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴𝐾, for any 𝑥𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥𝐵(𝑃, 𝑅) and 𝑃𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1 𝑋 = (BaseSet‘𝑈)
ubth.2 𝑁 = (normCV𝑊)
ubthlem.3 𝐷 = (IndMet‘𝑈)
ubthlem.4 𝐽 = (MetOpen‘𝐷)
ubthlem.5 𝑈 ∈ CBan
ubthlem.6 𝑊 ∈ NrmCVec
ubthlem.7 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
ubthlem.8 (𝜑 → ∀𝑥𝑋𝑐 ∈ ℝ ∀𝑡𝑇 (𝑁‘(𝑡𝑥)) ≤ 𝑐)
ubthlem.9 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
ubthlem.10 (𝜑𝐾 ∈ ℕ)
ubthlem.11 (𝜑𝑃𝑋)
ubthlem.12 (𝜑𝑅 ∈ ℝ+)
ubthlem.13 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
Assertion
Ref Expression
ubthlem2 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Distinct variable groups:   𝑘,𝑐,𝑥,𝑧,𝐴   𝑡,𝑐,𝐷,𝑘,𝑥,𝑧   𝑘,𝐽,𝑡,𝑥   𝑘,𝑑,𝑡,𝑥,𝑧,𝐾   𝑐,𝑑,𝑁,𝑘,𝑡,𝑥,𝑧   𝑡,𝑃,𝑧   𝜑,𝑐,𝑘,𝑡,𝑥   𝑅,𝑑,𝑡,𝑥,𝑧   𝑇,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧   𝑈,𝑐,𝑑,𝑡,𝑥,𝑧   𝑊,𝑐,𝑑,𝑡,𝑥   𝑋,𝑐,𝑑,𝑘,𝑡,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑑)   𝐴(𝑡,𝑑)   𝐷(𝑑)   𝑃(𝑥,𝑘,𝑐,𝑑)   𝑅(𝑘,𝑐)   𝑈(𝑘)   𝐽(𝑧,𝑐,𝑑)   𝐾(𝑐)   𝑊(𝑧,𝑘)

Proof of Theorem ubthlem2
StepHypRef Expression
1 ubthlem.10 . . . . . 6 (𝜑𝐾 ∈ ℕ)
21nnrpd 12953 . . . . 5 (𝜑𝐾 ∈ ℝ+)
32, 2rpaddcld 12970 . . . 4 (𝜑 → (𝐾 + 𝐾) ∈ ℝ+)
4 ubthlem.12 . . . 4 (𝜑𝑅 ∈ ℝ+)
53, 4rpdivcld 12972 . . 3 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ+)
65rpred 12955 . 2 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ)
7 oveq2 7361 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑃𝐷𝑧) = (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))))
87breq1d 5105 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅))
9 eleq1 2816 . . . . . . . . 9 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑧 ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
108, 9imbi12d 344 . . . . . . . 8 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)) ↔ ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾))))
11 ubthlem.13 . . . . . . . . . 10 (𝜑 → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾))
12 rabss 4025 . . . . . . . . . 10 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴𝐾) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1311, 12sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
1413ad2antrr 726 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝐴𝐾)))
15 ubthlem.5 . . . . . . . . . . 11 𝑈 ∈ CBan
16 bnnv 30828 . . . . . . . . . . 11 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
1715, 16ax-mp 5 . . . . . . . . . 10 𝑈 ∈ NrmCVec
1817a1i 11 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑈 ∈ NrmCVec)
19 ubthlem.11 . . . . . . . . . 10 (𝜑𝑃𝑋)
2019ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑃𝑋)
214ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2221rpcnd 12957 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℂ)
23 simpr 484 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑥𝑋)
24 ubth.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
25 eqid 2729 . . . . . . . . . . 11 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
2624, 25nvscl 30588 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
2718, 22, 23, 26syl3anc 1373 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋)
28 eqid 2729 . . . . . . . . . 10 ( +𝑣𝑈) = ( +𝑣𝑈)
2924, 28nvgcl 30582 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3018, 20, 27, 29syl3anc 1373 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋)
3110, 14, 30rspcdva 3580 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾)))
32 ubthlem.3 . . . . . . . . . . . . . . . 16 𝐷 = (IndMet‘𝑈)
3324, 32cbncms 30827 . . . . . . . . . . . . . . 15 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
3415, 33ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (CMet‘𝑋)
35 cmetmet 25202 . . . . . . . . . . . . . 14 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
36 metxmet 24238 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3734, 35, 36mp2b 10 . . . . . . . . . . . . 13 𝐷 ∈ (∞Met‘𝑋)
3837a1i 11 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
39 xmetsym 24251 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
4038, 20, 30, 39syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃))
41 eqid 2729 . . . . . . . . . . . . 13 ( −𝑣𝑈) = ( −𝑣𝑈)
42 eqid 2729 . . . . . . . . . . . . 13 (normCV𝑈) = (normCV𝑈)
4324, 41, 42, 32imsdval 30648 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4418, 30, 20, 43syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))𝐷𝑃) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)))
4524, 28, 41nvpncan2 30615 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ (𝑅( ·𝑠OLD𝑈)𝑥) ∈ 𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4618, 20, 27, 45syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃) = (𝑅( ·𝑠OLD𝑈)𝑥))
4746fveq2d 6830 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4840, 44, 473eqtrd 2768 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)))
4921rprege0d 12962 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
5024, 25, 42nvsge0 30626 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5118, 49, 23, 50syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅 · ((normCV𝑈)‘𝑥)))
5248, 51eqtrd 2764 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) = (𝑅 · ((normCV𝑈)‘𝑥)))
5322mulridd 11151 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · 1) = 𝑅)
5453eqcomd 2735 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 = (𝑅 · 1))
5552, 54breq12d 5108 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
5624, 42nvcl 30623 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
5717, 56mpan 690 . . . . . . . . . 10 (𝑥𝑋 → ((normCV𝑈)‘𝑥) ∈ ℝ)
5857adantl 481 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((normCV𝑈)‘𝑥) ∈ ℝ)
59 1red 11135 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 1 ∈ ℝ)
6058, 59, 21lemul2d 12999 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 ↔ (𝑅 · ((normCV𝑈)‘𝑥)) ≤ (𝑅 · 1)))
6155, 60bitr4d 282 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃𝐷(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ≤ 𝑅 ↔ ((normCV𝑈)‘𝑥) ≤ 1))
62 breq2 5099 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → ((𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6362ralbidv 3152 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾))
6463rabbidv 3404 . . . . . . . . . . . 12 (𝑘 = 𝐾 → {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘} = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
65 ubthlem.9 . . . . . . . . . . . 12 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝑘})
6624fvexi 6840 . . . . . . . . . . . . 13 𝑋 ∈ V
6766rabex 5281 . . . . . . . . . . . 12 {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ∈ V
6864, 65, 67fvmpt 6934 . . . . . . . . . . 11 (𝐾 ∈ ℕ → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
691, 68syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝐾) = {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
7069eleq2d 2814 . . . . . . . . 9 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾}))
71 2fveq3 6831 . . . . . . . . . . . 12 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))))
7271breq1d 5105 . . . . . . . . . . 11 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7372ralbidv 3152 . . . . . . . . . 10 (𝑧 = (𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7473elrab 3650 . . . . . . . . 9 ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7570, 74bitrdi 287 . . . . . . . 8 (𝜑 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7675ad2antrr 726 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ (𝐴𝐾) ↔ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
7731, 61, 763imtr3d 293 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾)))
78 rsp 3217 . . . . . . . . . 10 (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑡𝑇 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
7978com12 32 . . . . . . . . 9 (𝑡𝑇 → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
8079ad2antlr 727 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾))
81 xmet0 24246 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃𝐷𝑃) = 0)
8237, 19, 81sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑃𝐷𝑃) = 0)
834rpge0d 12959 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑅)
8482, 83eqbrtrd 5117 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃𝐷𝑃) ≤ 𝑅)
85 oveq2 7361 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑃 → (𝑃𝐷𝑧) = (𝑃𝐷𝑃))
8685breq1d 5105 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑃 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑃) ≤ 𝑅))
8786elrab 3650 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑃𝐷𝑃) ≤ 𝑅))
8819, 84, 87sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
8911, 88sseldd 3938 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ (𝐴𝐾))
9089, 69eleqtrd 2830 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾})
91 2fveq3 6831 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑃 → (𝑁‘(𝑡𝑧)) = (𝑁‘(𝑡𝑃)))
9291breq1d 5105 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑃 → ((𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9392ralbidv 3152 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑃 → (∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾 ↔ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9493elrab 3650 . . . . . . . . . . . . . . 15 (𝑃 ∈ {𝑧𝑋 ∣ ∀𝑡𝑇 (𝑁‘(𝑡𝑧)) ≤ 𝐾} ↔ (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9590, 94sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑃𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾))
9695simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑡𝑇 (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9796r19.21bi 3221 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
9897adantr 480 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ≤ 𝐾)
99 ubthlem.6 . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
100 ubthlem.7 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ⊆ (𝑈 BLnOp 𝑊))
101100sselda 3937 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊))
102 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (IndMet‘𝑊) = (IndMet‘𝑊)
103 ubthlem.4 . . . . . . . . . . . . . . . . . . 19 𝐽 = (MetOpen‘𝐷)
104 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊))
105 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
10632, 102, 103, 104, 105, 17, 99blocn2 30770 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))))
107103mopntopon 24343 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
10837, 107ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝐽 ∈ (TopOn‘𝑋)
109 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (BaseSet‘𝑊) = (BaseSet‘𝑊)
110109, 102imsxmet 30654 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)))
111104mopntopon 24343 . . . . . . . . . . . . . . . . . . . 20 ((IndMet‘𝑊) ∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)))
11299, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))
113 iscncl 23172 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ (MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽))))
114108, 112, 113mp2an 692 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
115106, 114sylib 218 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
116101, 115syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑡𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (Clsd‘(MetOpen‘(IndMet‘𝑊)))(𝑡𝑥) ∈ (Clsd‘𝐽)))
117116simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊))
118117adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡:𝑋⟶(BaseSet‘𝑊))
119118, 30ffvelcdmd 7023 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊))
120 ubth.2 . . . . . . . . . . . . . 14 𝑁 = (normCV𝑊)
121109, 120nvcl 30623 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
12299, 119, 121sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ)
123118, 20ffvelcdmd 7023 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑃) ∈ (BaseSet‘𝑊))
124109, 120nvcl 30623 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
12599, 123, 124sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑃)) ∈ ℝ)
1261nnred 12161 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ)
127126ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝐾 ∈ ℝ)
128 le2add 11620 . . . . . . . . . . . 12 ((((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ∈ ℝ ∧ (𝑁‘(𝑡𝑃)) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
129122, 125, 127, 127, 128syl22anc 838 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13098, 129mpan2d 694 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)))
13146fveq2d 6830 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)))
13299a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑊 ∈ NrmCVec)
133 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
134133, 105bloln 30746 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡 ∈ (𝑈 LnOp 𝑊))
13517, 99, 134mp3an12 1453 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝑈 LnOp 𝑊))
136101, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑈 LnOp 𝑊))
137136adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑡 ∈ (𝑈 LnOp 𝑊))
138 eqid 2729 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
13924, 41, 138, 133lnosub 30721 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ ((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋𝑃𝑋)) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
14018, 132, 137, 30, 20, 139syl32anc 1380 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))( −𝑣𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)))
141 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
14224, 25, 141, 133lnomul 30722 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑅 ∈ ℂ ∧ 𝑥𝑋)) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
14318, 132, 137, 22, 23, 142syl32anc 1380 . . . . . . . . . . . . . . 15 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡‘(𝑅( ·𝑠OLD𝑈)𝑥)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
144131, 140, 1433eqtr3d 2772 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃)) = (𝑅( ·𝑠OLD𝑊)(𝑡𝑥)))
145144fveq2d 6830 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))))
146117ffvelcdmda 7022 . . . . . . . . . . . . . 14 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑡𝑥) ∈ (BaseSet‘𝑊))
147109, 141, 120nvsge0 30626 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
148132, 49, 146, 147syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑅( ·𝑠OLD𝑊)(𝑡𝑥))) = (𝑅 · (𝑁‘(𝑡𝑥))))
149145, 148eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) = (𝑅 · (𝑁‘(𝑡𝑥))))
150109, 138, 120nvmtri 30633 . . . . . . . . . . . . 13 ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥))) ∈ (BaseSet‘𝑊) ∧ (𝑡𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
151132, 119, 123, 150syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))( −𝑣𝑊)(𝑡𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
152149, 151eqbrtrrd 5119 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))))
15321rpred 12955 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ)
154109, 120nvcl 30623 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ (𝑡𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
15599, 146, 154sylancr 587 . . . . . . . . . . . . 13 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑁‘(𝑡𝑥)) ∈ ℝ)
156153, 155remulcld 11164 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ)
157122, 125readdcld 11163 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ)
1583rpred 12955 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 𝐾) ∈ ℝ)
159158ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (𝐾 + 𝐾) ∈ ℝ)
160 letr 11228 . . . . . . . . . . . 12 (((𝑅 · (𝑁‘(𝑡𝑥))) ∈ ℝ ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∈ ℝ ∧ (𝐾 + 𝐾) ∈ ℝ) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
161156, 157, 159, 160syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑅 · (𝑁‘(𝑡𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
162152, 161mpand 695 . . . . . . . . . 10 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) + (𝑁‘(𝑡𝑃))) ≤ (𝐾 + 𝐾) → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
163130, 162syld 47 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾)))
164155, 159, 21lemuldiv2d 13005 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑅 · (𝑁‘(𝑡𝑥))) ≤ (𝐾 + 𝐾) ↔ (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
165163, 164sylibd 239 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16680, 165syld 47 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
167166adantld 490 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣𝑈)(𝑅( ·𝑠OLD𝑈)𝑥)))) ≤ 𝐾) → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
16877, 167syld 47 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑥𝑋) → (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
169168ralrimiva 3121 . . . 4 ((𝜑𝑡𝑇) → ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))
1705rpxrd 12956 . . . . . 6 (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
171170adantr 480 . . . . 5 ((𝜑𝑡𝑇) → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*)
172 eqid 2729 . . . . . 6 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
17324, 109, 42, 120, 172, 17, 99nmoubi 30734 . . . . 5 ((𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
174117, 171, 173syl2anc 584 . . . 4 ((𝜑𝑡𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥𝑋 (((normCV𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))))
175169, 174mpbird 257 . . 3 ((𝜑𝑡𝑇) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
176175ralrimiva 3121 . 2 (𝜑 → ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))
177 brralrspcev 5155 . 2 ((((𝐾 + 𝐾) / 𝑅) ∈ ℝ ∧ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
1786, 176, 177syl2anc 584 1 (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  wss 3905   class class class wbr 5095  cmpt 5176  ccnv 5622  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167  cle 11169   / cdiv 11795  cn 12146  +crp 12911  ∞Metcxmet 21264  Metcmet 21265  MetOpencmopn 21269  TopOnctopon 22813  Clsdccld 22919   Cn ccn 23127  CMetccmet 25170  NrmCVeccnv 30546   +𝑣 cpv 30547  BaseSetcba 30548   ·𝑠OLD cns 30549  𝑣 cnsb 30551  normCVcnmcv 30552  IndMetcims 30553   LnOp clno 30702   normOpOLD cnmoo 30703   BLnOp cblo 30704  CBanccbn 30824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-cn 23130  df-cnp 23131  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-lno 30706  df-nmoo 30707  df-blo 30708  df-0o 30709  df-cbn 30825
This theorem is referenced by:  ubthlem3  30834
  Copyright terms: Public domain W3C validator