| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnrel | ⊢ Rel CBan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnnv 30795 | . . 3 ⊢ (𝑥 ∈ CBan → 𝑥 ∈ NrmCVec) | |
| 2 | 1 | ssriv 3950 | . 2 ⊢ CBan ⊆ NrmCVec |
| 3 | nvrel 30531 | . 2 ⊢ Rel NrmCVec | |
| 4 | relss 5744 | . 2 ⊢ (CBan ⊆ NrmCVec → (Rel NrmCVec → Rel CBan)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CBan |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 Rel wrel 5643 NrmCVeccnv 30513 CBanccbn 30791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-iota 6464 df-fv 6519 df-oprab 7391 df-nv 30521 df-cbn 30792 |
| This theorem is referenced by: hlrel 30819 |
| Copyright terms: Public domain | W3C validator |