MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnrel Structured version   Visualization version   GIF version

Theorem bnrel 29208
Description: The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
bnrel Rel CBan

Proof of Theorem bnrel
StepHypRef Expression
1 bnnv 29207 . . 3 (𝑥 ∈ CBan → 𝑥 ∈ NrmCVec)
21ssriv 3929 . 2 CBan ⊆ NrmCVec
3 nvrel 28943 . 2 Rel NrmCVec
4 relss 5690 . 2 (CBan ⊆ NrmCVec → (Rel NrmCVec → Rel CBan))
52, 3, 4mp2 9 1 Rel CBan
Colors of variables: wff setvar class
Syntax hints:  wss 3891  Rel wrel 5593  NrmCVeccnv 28925  CBanccbn 29203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-iota 6388  df-fv 6438  df-oprab 7272  df-nv 28933  df-cbn 29204
This theorem is referenced by:  hlrel  29231
  Copyright terms: Public domain W3C validator