| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bnrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnrel | ⊢ Rel CBan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnnv 30838 | . . 3 ⊢ (𝑥 ∈ CBan → 𝑥 ∈ NrmCVec) | |
| 2 | 1 | ssriv 3933 | . 2 ⊢ CBan ⊆ NrmCVec |
| 3 | nvrel 30574 | . 2 ⊢ Rel NrmCVec | |
| 4 | relss 5717 | . 2 ⊢ (CBan ⊆ NrmCVec → (Rel NrmCVec → Rel CBan)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CBan |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 Rel wrel 5616 NrmCVeccnv 30556 CBanccbn 30834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-iota 6432 df-fv 6484 df-oprab 7345 df-nv 30564 df-cbn 30835 |
| This theorem is referenced by: hlrel 30862 |
| Copyright terms: Public domain | W3C validator |