| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvecolem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for minveco 30863. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| Ref | Expression |
|---|---|
| minvecolem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
| 2 | minveco.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 3 | phnv 30793 | . . . . . . . 8 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmCVec) |
| 6 | minveco.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
| 8 | minveco.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 9 | elin 3927 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
| 10 | 8, 9 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
| 11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
| 12 | minveco.x | . . . . . . . . . 10 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 13 | minveco.y | . . . . . . . . . 10 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 14 | eqid 2729 | . . . . . . . . . 10 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 15 | 12, 13, 14 | sspba 30706 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
| 16 | 4, 11, 15 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 17 | 16 | sselda 3943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 18 | minveco.m | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 19 | 12, 18 | nvmcl 30625 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝑀𝑦) ∈ 𝑋) |
| 20 | 5, 7, 17, 19 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝑀𝑦) ∈ 𝑋) |
| 21 | minveco.n | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
| 22 | 12, 21 | nvcl 30640 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
| 23 | 5, 20, 22 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
| 24 | 23 | fmpttd 7069 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ) |
| 25 | 24 | frnd 6678 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ) |
| 26 | 1, 25 | eqsstrid 3982 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 27 | 10 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ CBan) |
| 28 | bnnv 30845 | . . . . . 6 ⊢ (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec) | |
| 29 | eqid 2729 | . . . . . . 7 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
| 30 | 13, 29 | nvzcl 30613 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
| 31 | 27, 28, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0vec‘𝑊) ∈ 𝑌) |
| 32 | fvex 6853 | . . . . . 6 ⊢ (𝑁‘(𝐴𝑀𝑦)) ∈ V | |
| 33 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
| 34 | 32, 33 | dmmpti 6644 | . . . . 5 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌 |
| 35 | 31, 34 | eleqtrrdi 2839 | . . . 4 ⊢ (𝜑 → (0vec‘𝑊) ∈ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
| 36 | 35 | ne0d 4301 | . . 3 ⊢ (𝜑 → dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅) |
| 37 | dm0rn0 5878 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) | |
| 38 | 1 | eqeq1i 2734 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) |
| 39 | 37, 38 | bitr4i 278 | . . . 4 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅) |
| 40 | 39 | necon3bii 2977 | . . 3 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅) |
| 41 | 36, 40 | sylib 218 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
| 42 | 12, 21 | nvge0 30652 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 43 | 5, 20, 42 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 44 | 43 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 45 | 32 | rgenw 3048 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V |
| 46 | breq2 5106 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) | |
| 47 | 33, 46 | ralrnmptw 7048 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) |
| 48 | 45, 47 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
| 49 | 44, 48 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
| 50 | 1 | raleqi 3294 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
| 51 | 49, 50 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 52 | 26, 41, 51 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 ≤ cle 11185 MetOpencmopn 21286 NrmCVeccnv 30563 BaseSetcba 30565 0veccn0v 30567 −𝑣 cnsb 30568 normCVcnmcv 30569 IndMetcims 30570 SubSpcss 30700 CPreHilOLDccphlo 30791 CBanccbn 30841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ssp 30701 df-ph 30792 df-cbn 30842 |
| This theorem is referenced by: minvecolem2 30854 minvecolem3 30855 minvecolem4c 30858 minvecolem4 30859 minvecolem5 30860 minvecolem6 30861 |
| Copyright terms: Public domain | W3C validator |