MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Structured version   Visualization version   GIF version

Theorem minvecolem1 28302
Description: Lemma for minveco 28312. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
Assertion
Ref Expression
minvecolem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,𝐽   𝑤,𝑀,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅   𝑤,𝐴,𝑦   𝑤,𝐷,𝑦   𝑤,𝑈,𝑦   𝑤,𝑊,𝑦   𝑤,𝑋   𝑤,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
3 phnv 28241 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
42, 3syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
54adantr 474 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6 minveco.a . . . . . . . 8 (𝜑𝐴𝑋)
76adantr 474 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 elin 4019 . . . . . . . . . . 11 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
108, 9sylib 210 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
1110simpld 490 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
12 minveco.x . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
13 minveco.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
14 eqid 2778 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
1512, 13, 14sspba 28154 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
164, 11, 15syl2anc 579 . . . . . . . 8 (𝜑𝑌𝑋)
1716sselda 3821 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
18 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
1912, 18nvmcl 28073 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
205, 7, 17, 19syl3anc 1439 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
21 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
2212, 21nvcl 28088 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
235, 20, 22syl2anc 579 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
2423fmpttd 6649 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ)
2524frnd 6298 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ)
261, 25syl5eqss 3868 . 2 (𝜑𝑅 ⊆ ℝ)
2710simprd 491 . . . . . 6 (𝜑𝑊 ∈ CBan)
28 bnnv 28294 . . . . . 6 (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec)
29 eqid 2778 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
3013, 29nvzcl 28061 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
3127, 28, 303syl 18 . . . . 5 (𝜑 → (0vec𝑊) ∈ 𝑌)
32 fvex 6459 . . . . . 6 (𝑁‘(𝐴𝑀𝑦)) ∈ V
33 eqid 2778 . . . . . 6 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
3432, 33dmmpti 6269 . . . . 5 dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌
3531, 34syl6eleqr 2870 . . . 4 (𝜑 → (0vec𝑊) ∈ dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
3635ne0d 4150 . . 3 (𝜑 → dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅)
37 dm0rn0 5587 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
381eqeq1i 2783 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
3937, 38bitr4i 270 . . . 4 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅)
4039necon3bii 3021 . . 3 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅)
4136, 40sylib 210 . 2 (𝜑𝑅 ≠ ∅)
4212, 21nvge0 28100 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
435, 20, 42syl2anc 579 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4443ralrimiva 3148 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4532rgenw 3106 . . . . 5 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
46 breq2 4890 . . . . . 6 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4733, 46ralrnmpt 6632 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4845, 47ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4944, 48sylibr 226 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
501raleqi 3338 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
5149, 50sylibr 226 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
5226, 41, 513jca 1119 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  Vcvv 3398  cin 3791  wss 3792  c0 4141   class class class wbr 4886  cmpt 4965  dom cdm 5355  ran crn 5356  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  cle 10412  MetOpencmopn 20132  NrmCVeccnv 28011  BaseSetcba 28013  0veccn0v 28015  𝑣 cnsb 28016  normCVcnmcv 28017  IndMetcims 28018  SubSpcss 28148  CPreHilOLDccphlo 28239  CBanccbn 28290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ssp 28149  df-ph 28240  df-cbn 28291
This theorem is referenced by:  minvecolem2  28303  minvecolem3  28304  minvecolem4c  28307  minvecolem4  28308  minvecolem5  28309  minvecolem6  28310
  Copyright terms: Public domain W3C validator