![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem1 | Structured version Visualization version GIF version |
Description: Lemma for minveco 30926. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
Ref | Expression |
---|---|
minvecolem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
2 | minveco.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
3 | phnv 30856 | . . . . . . . 8 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmCVec) |
6 | minveco.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
8 | minveco.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
9 | elin 3980 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
10 | 8, 9 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
12 | minveco.x | . . . . . . . . . 10 ⊢ 𝑋 = (BaseSet‘𝑈) | |
13 | minveco.y | . . . . . . . . . 10 ⊢ 𝑌 = (BaseSet‘𝑊) | |
14 | eqid 2736 | . . . . . . . . . 10 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
15 | 12, 13, 14 | sspba 30769 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
16 | 4, 11, 15 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
17 | 16 | sselda 3996 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
18 | minveco.m | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
19 | 12, 18 | nvmcl 30688 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝑀𝑦) ∈ 𝑋) |
20 | 5, 7, 17, 19 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝑀𝑦) ∈ 𝑋) |
21 | minveco.n | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
22 | 12, 21 | nvcl 30703 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
23 | 5, 20, 22 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
24 | 23 | fmpttd 7139 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ) |
25 | 24 | frnd 6749 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ) |
26 | 1, 25 | eqsstrid 4045 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
27 | 10 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ CBan) |
28 | bnnv 30908 | . . . . . 6 ⊢ (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec) | |
29 | eqid 2736 | . . . . . . 7 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
30 | 13, 29 | nvzcl 30676 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
31 | 27, 28, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0vec‘𝑊) ∈ 𝑌) |
32 | fvex 6924 | . . . . . 6 ⊢ (𝑁‘(𝐴𝑀𝑦)) ∈ V | |
33 | eqid 2736 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
34 | 32, 33 | dmmpti 6717 | . . . . 5 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌 |
35 | 31, 34 | eleqtrrdi 2851 | . . . 4 ⊢ (𝜑 → (0vec‘𝑊) ∈ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
36 | 35 | ne0d 4349 | . . 3 ⊢ (𝜑 → dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅) |
37 | dm0rn0 5939 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) | |
38 | 1 | eqeq1i 2741 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) |
39 | 37, 38 | bitr4i 278 | . . . 4 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅) |
40 | 39 | necon3bii 2992 | . . 3 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅) |
41 | 36, 40 | sylib 218 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
42 | 12, 21 | nvge0 30715 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
43 | 5, 20, 42 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
44 | 43 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
45 | 32 | rgenw 3064 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V |
46 | breq2 5153 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) | |
47 | 33, 46 | ralrnmptw 7118 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) |
48 | 45, 47 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
49 | 44, 48 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
50 | 1 | raleqi 3323 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
51 | 49, 50 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
52 | 26, 41, 51 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 Vcvv 3479 ∩ cin 3963 ⊆ wss 3964 ∅c0 4340 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5690 ran crn 5691 ‘cfv 6566 (class class class)co 7435 ℝcr 11158 0cc0 11159 ≤ cle 11300 MetOpencmopn 21378 NrmCVeccnv 30626 BaseSetcba 30628 0veccn0v 30630 −𝑣 cnsb 30631 normCVcnmcv 30632 IndMetcims 30633 SubSpcss 30763 CPreHilOLDccphlo 30854 CBanccbn 30904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-grpo 30535 df-gid 30536 df-ginv 30537 df-gdiv 30538 df-ablo 30587 df-vc 30601 df-nv 30634 df-va 30637 df-ba 30638 df-sm 30639 df-0v 30640 df-vs 30641 df-nmcv 30642 df-ssp 30764 df-ph 30855 df-cbn 30905 |
This theorem is referenced by: minvecolem2 30917 minvecolem3 30918 minvecolem4c 30921 minvecolem4 30922 minvecolem5 30923 minvecolem6 30924 |
Copyright terms: Public domain | W3C validator |