MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Structured version   Visualization version   GIF version

Theorem minvecolem1 29621
Description: Lemma for minveco 29631. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
Assertion
Ref Expression
minvecolem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,𝐽   𝑤,𝑀,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅   𝑤,𝐴,𝑦   𝑤,𝐷,𝑦   𝑤,𝑈,𝑦   𝑤,𝑊,𝑦   𝑤,𝑋   𝑤,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
3 phnv 29561 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
42, 3syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
54adantr 482 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6 minveco.a . . . . . . . 8 (𝜑𝐴𝑋)
76adantr 482 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 elin 3925 . . . . . . . . . . 11 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
108, 9sylib 217 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
1110simpld 496 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
12 minveco.x . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
13 minveco.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
14 eqid 2738 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
1512, 13, 14sspba 29474 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
164, 11, 15syl2anc 585 . . . . . . . 8 (𝜑𝑌𝑋)
1716sselda 3943 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
18 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
1912, 18nvmcl 29393 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
205, 7, 17, 19syl3anc 1372 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
21 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
2212, 21nvcl 29408 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
235, 20, 22syl2anc 585 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
2423fmpttd 7058 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ)
2524frnd 6672 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ)
261, 25eqsstrid 3991 . 2 (𝜑𝑅 ⊆ ℝ)
2710simprd 497 . . . . . 6 (𝜑𝑊 ∈ CBan)
28 bnnv 29613 . . . . . 6 (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec)
29 eqid 2738 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
3013, 29nvzcl 29381 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
3127, 28, 303syl 18 . . . . 5 (𝜑 → (0vec𝑊) ∈ 𝑌)
32 fvex 6851 . . . . . 6 (𝑁‘(𝐴𝑀𝑦)) ∈ V
33 eqid 2738 . . . . . 6 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
3432, 33dmmpti 6641 . . . . 5 dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌
3531, 34eleqtrrdi 2850 . . . 4 (𝜑 → (0vec𝑊) ∈ dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
3635ne0d 4294 . . 3 (𝜑 → dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅)
37 dm0rn0 5877 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
381eqeq1i 2743 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
3937, 38bitr4i 278 . . . 4 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅)
4039necon3bii 2995 . . 3 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅)
4136, 40sylib 217 . 2 (𝜑𝑅 ≠ ∅)
4212, 21nvge0 29420 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
435, 20, 42syl2anc 585 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4443ralrimiva 3142 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4532rgenw 3067 . . . . 5 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
46 breq2 5108 . . . . . 6 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4733, 46ralrnmptw 7039 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4845, 47ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4944, 48sylibr 233 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
501raleqi 3310 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
5149, 50sylibr 233 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
5226, 41, 513jca 1129 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2942  wral 3063  Vcvv 3444  cin 3908  wss 3909  c0 4281   class class class wbr 5104  cmpt 5187  dom cdm 5631  ran crn 5632  cfv 6492  (class class class)co 7350  cr 10984  0cc0 10985  cle 11124  MetOpencmopn 20715  NrmCVeccnv 29331  BaseSetcba 29333  0veccn0v 29335  𝑣 cnsb 29336  normCVcnmcv 29337  IndMetcims 29338  SubSpcss 29468  CPreHilOLDccphlo 29559  CBanccbn 29609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-sup 9312  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-n0 12348  df-z 12434  df-uz 12698  df-rp 12846  df-seq 13837  df-exp 13898  df-cj 14919  df-re 14920  df-im 14921  df-sqrt 15055  df-abs 15056  df-grpo 29240  df-gid 29241  df-ginv 29242  df-gdiv 29243  df-ablo 29292  df-vc 29306  df-nv 29339  df-va 29342  df-ba 29343  df-sm 29344  df-0v 29345  df-vs 29346  df-nmcv 29347  df-ssp 29469  df-ph 29560  df-cbn 29610
This theorem is referenced by:  minvecolem2  29622  minvecolem3  29623  minvecolem4c  29626  minvecolem4  29627  minvecolem5  29628  minvecolem6  29629
  Copyright terms: Public domain W3C validator