Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minvecolem1 | Structured version Visualization version GIF version |
Description: Lemma for minveco 29147. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
Ref | Expression |
---|---|
minvecolem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
2 | minveco.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
3 | phnv 29077 | . . . . . . . 8 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmCVec) |
6 | minveco.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
8 | minveco.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
9 | elin 3899 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
10 | 8, 9 | sylib 217 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
12 | minveco.x | . . . . . . . . . 10 ⊢ 𝑋 = (BaseSet‘𝑈) | |
13 | minveco.y | . . . . . . . . . 10 ⊢ 𝑌 = (BaseSet‘𝑊) | |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
15 | 12, 13, 14 | sspba 28990 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
16 | 4, 11, 15 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
17 | 16 | sselda 3917 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
18 | minveco.m | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
19 | 12, 18 | nvmcl 28909 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝑀𝑦) ∈ 𝑋) |
20 | 5, 7, 17, 19 | syl3anc 1369 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝑀𝑦) ∈ 𝑋) |
21 | minveco.n | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
22 | 12, 21 | nvcl 28924 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
23 | 5, 20, 22 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
24 | 23 | fmpttd 6971 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ) |
25 | 24 | frnd 6592 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ) |
26 | 1, 25 | eqsstrid 3965 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
27 | 10 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ CBan) |
28 | bnnv 29129 | . . . . . 6 ⊢ (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec) | |
29 | eqid 2738 | . . . . . . 7 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
30 | 13, 29 | nvzcl 28897 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
31 | 27, 28, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0vec‘𝑊) ∈ 𝑌) |
32 | fvex 6769 | . . . . . 6 ⊢ (𝑁‘(𝐴𝑀𝑦)) ∈ V | |
33 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
34 | 32, 33 | dmmpti 6561 | . . . . 5 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌 |
35 | 31, 34 | eleqtrrdi 2850 | . . . 4 ⊢ (𝜑 → (0vec‘𝑊) ∈ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
36 | 35 | ne0d 4266 | . . 3 ⊢ (𝜑 → dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅) |
37 | dm0rn0 5823 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) | |
38 | 1 | eqeq1i 2743 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) |
39 | 37, 38 | bitr4i 277 | . . . 4 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅) |
40 | 39 | necon3bii 2995 | . . 3 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅) |
41 | 36, 40 | sylib 217 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
42 | 12, 21 | nvge0 28936 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
43 | 5, 20, 42 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
44 | 43 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
45 | 32 | rgenw 3075 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V |
46 | breq2 5074 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) | |
47 | 33, 46 | ralrnmptw 6952 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) |
48 | 45, 47 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
49 | 44, 48 | sylibr 233 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
50 | 1 | raleqi 3337 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
51 | 49, 50 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
52 | 26, 41, 51 | 3jca 1126 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 ≤ cle 10941 MetOpencmopn 20500 NrmCVeccnv 28847 BaseSetcba 28849 0veccn0v 28851 −𝑣 cnsb 28852 normCVcnmcv 28853 IndMetcims 28854 SubSpcss 28984 CPreHilOLDccphlo 29075 CBanccbn 29125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ssp 28985 df-ph 29076 df-cbn 29126 |
This theorem is referenced by: minvecolem2 29138 minvecolem3 29139 minvecolem4c 29142 minvecolem4 29143 minvecolem5 29144 minvecolem6 29145 |
Copyright terms: Public domain | W3C validator |