MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Structured version   Visualization version   GIF version

Theorem minvecolem1 28655
Description: Lemma for minveco 28665. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
Assertion
Ref Expression
minvecolem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,𝐽   𝑤,𝑀,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅   𝑤,𝐴,𝑦   𝑤,𝐷,𝑦   𝑤,𝑈,𝑦   𝑤,𝑊,𝑦   𝑤,𝑋   𝑤,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
3 phnv 28595 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
42, 3syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
54adantr 484 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6 minveco.a . . . . . . . 8 (𝜑𝐴𝑋)
76adantr 484 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 elin 3924 . . . . . . . . . . 11 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
108, 9sylib 221 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
1110simpld 498 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
12 minveco.x . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
13 minveco.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
14 eqid 2822 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
1512, 13, 14sspba 28508 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
164, 11, 15syl2anc 587 . . . . . . . 8 (𝜑𝑌𝑋)
1716sselda 3942 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
18 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
1912, 18nvmcl 28427 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
205, 7, 17, 19syl3anc 1368 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
21 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
2212, 21nvcl 28442 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
235, 20, 22syl2anc 587 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
2423fmpttd 6861 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ)
2524frnd 6501 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ)
261, 25eqsstrid 3990 . 2 (𝜑𝑅 ⊆ ℝ)
2710simprd 499 . . . . . 6 (𝜑𝑊 ∈ CBan)
28 bnnv 28647 . . . . . 6 (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec)
29 eqid 2822 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
3013, 29nvzcl 28415 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
3127, 28, 303syl 18 . . . . 5 (𝜑 → (0vec𝑊) ∈ 𝑌)
32 fvex 6665 . . . . . 6 (𝑁‘(𝐴𝑀𝑦)) ∈ V
33 eqid 2822 . . . . . 6 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
3432, 33dmmpti 6472 . . . . 5 dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌
3531, 34eleqtrrdi 2925 . . . 4 (𝜑 → (0vec𝑊) ∈ dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
3635ne0d 4273 . . 3 (𝜑 → dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅)
37 dm0rn0 5772 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
381eqeq1i 2827 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
3937, 38bitr4i 281 . . . 4 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅)
4039necon3bii 3063 . . 3 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅)
4136, 40sylib 221 . 2 (𝜑𝑅 ≠ ∅)
4212, 21nvge0 28454 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
435, 20, 42syl2anc 587 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4443ralrimiva 3174 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4532rgenw 3142 . . . . 5 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
46 breq2 5046 . . . . . 6 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4733, 46ralrnmptw 6842 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4845, 47ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4944, 48sylibr 237 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
501raleqi 3390 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
5149, 50sylibr 237 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
5226, 41, 513jca 1125 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  Vcvv 3469  cin 3907  wss 3908  c0 4265   class class class wbr 5042  cmpt 5122  dom cdm 5532  ran crn 5533  cfv 6334  (class class class)co 7140  cr 10525  0cc0 10526  cle 10665  MetOpencmopn 20079  NrmCVeccnv 28365  BaseSetcba 28367  0veccn0v 28369  𝑣 cnsb 28370  normCVcnmcv 28371  IndMetcims 28372  SubSpcss 28502  CPreHilOLDccphlo 28593  CBanccbn 28643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-grpo 28274  df-gid 28275  df-ginv 28276  df-gdiv 28277  df-ablo 28326  df-vc 28340  df-nv 28373  df-va 28376  df-ba 28377  df-sm 28378  df-0v 28379  df-vs 28380  df-nmcv 28381  df-ssp 28503  df-ph 28594  df-cbn 28644
This theorem is referenced by:  minvecolem2  28656  minvecolem3  28657  minvecolem4c  28660  minvecolem4  28661  minvecolem5  28662  minvecolem6  28663
  Copyright terms: Public domain W3C validator