![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem1 | Structured version Visualization version GIF version |
Description: Lemma for minveco 30916. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
Ref | Expression |
---|---|
minvecolem1 | ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.r | . . 3 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
2 | minveco.u | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
3 | phnv 30846 | . . . . . . . 8 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmCVec) |
6 | minveco.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
8 | minveco.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
9 | elin 3992 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
10 | 8, 9 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
11 | 10 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
12 | minveco.x | . . . . . . . . . 10 ⊢ 𝑋 = (BaseSet‘𝑈) | |
13 | minveco.y | . . . . . . . . . 10 ⊢ 𝑌 = (BaseSet‘𝑊) | |
14 | eqid 2740 | . . . . . . . . . 10 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
15 | 12, 13, 14 | sspba 30759 | . . . . . . . . 9 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
16 | 4, 11, 15 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
17 | 16 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
18 | minveco.m | . . . . . . . 8 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
19 | 12, 18 | nvmcl 30678 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝑀𝑦) ∈ 𝑋) |
20 | 5, 7, 17, 19 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐴𝑀𝑦) ∈ 𝑋) |
21 | minveco.n | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
22 | 12, 21 | nvcl 30693 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
23 | 5, 20, 22 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ) |
24 | 23 | fmpttd 7149 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ) |
25 | 24 | frnd 6755 | . . 3 ⊢ (𝜑 → ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ) |
26 | 1, 25 | eqsstrid 4057 | . 2 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
27 | 10 | simprd 495 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ CBan) |
28 | bnnv 30898 | . . . . . 6 ⊢ (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec) | |
29 | eqid 2740 | . . . . . . 7 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
30 | 13, 29 | nvzcl 30666 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ 𝑌) |
31 | 27, 28, 30 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0vec‘𝑊) ∈ 𝑌) |
32 | fvex 6933 | . . . . . 6 ⊢ (𝑁‘(𝐴𝑀𝑦)) ∈ V | |
33 | eqid 2740 | . . . . . 6 ⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
34 | 32, 33 | dmmpti 6724 | . . . . 5 ⊢ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌 |
35 | 31, 34 | eleqtrrdi 2855 | . . . 4 ⊢ (𝜑 → (0vec‘𝑊) ∈ dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))) |
36 | 35 | ne0d 4365 | . . 3 ⊢ (𝜑 → dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅) |
37 | dm0rn0 5949 | . . . . 5 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) | |
38 | 1 | eqeq1i 2745 | . . . . 5 ⊢ (𝑅 = ∅ ↔ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅) |
39 | 37, 38 | bitr4i 278 | . . . 4 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅) |
40 | 39 | necon3bii 2999 | . . 3 ⊢ (dom (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅) |
41 | 36, 40 | sylib 218 | . 2 ⊢ (𝜑 → 𝑅 ≠ ∅) |
42 | 12, 21 | nvge0 30705 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
43 | 5, 20, 42 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
44 | 43 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
45 | 32 | rgenw 3071 | . . . . 5 ⊢ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V |
46 | breq2 5170 | . . . . . 6 ⊢ (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) | |
47 | 33, 46 | ralrnmptw 7128 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))) |
48 | 45, 47 | ax-mp 5 | . . . 4 ⊢ (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))) |
49 | 44, 48 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
50 | 1 | raleqi 3332 | . . 3 ⊢ (∀𝑤 ∈ 𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤) |
51 | 49, 50 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
52 | 26, 41, 51 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 ≤ cle 11325 MetOpencmopn 21377 NrmCVeccnv 30616 BaseSetcba 30618 0veccn0v 30620 −𝑣 cnsb 30621 normCVcnmcv 30622 IndMetcims 30623 SubSpcss 30753 CPreHilOLDccphlo 30844 CBanccbn 30894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ssp 30754 df-ph 30845 df-cbn 30895 |
This theorem is referenced by: minvecolem2 30907 minvecolem3 30908 minvecolem4c 30911 minvecolem4 30912 minvecolem5 30913 minvecolem6 30914 |
Copyright terms: Public domain | W3C validator |