MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Structured version   Visualization version   GIF version

Theorem minvecolem1 30906
Description: Lemma for minveco 30916. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
Assertion
Ref Expression
minvecolem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,𝐽   𝑤,𝑀,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅   𝑤,𝐴,𝑦   𝑤,𝐷,𝑦   𝑤,𝑈,𝑦   𝑤,𝑊,𝑦   𝑤,𝑋   𝑤,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
3 phnv 30846 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
42, 3syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
54adantr 480 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6 minveco.a . . . . . . . 8 (𝜑𝐴𝑋)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 elin 3992 . . . . . . . . . . 11 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
108, 9sylib 218 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
1110simpld 494 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
12 minveco.x . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
13 minveco.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
14 eqid 2740 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
1512, 13, 14sspba 30759 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
164, 11, 15syl2anc 583 . . . . . . . 8 (𝜑𝑌𝑋)
1716sselda 4008 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
18 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
1912, 18nvmcl 30678 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
205, 7, 17, 19syl3anc 1371 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
21 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
2212, 21nvcl 30693 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
235, 20, 22syl2anc 583 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
2423fmpttd 7149 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ)
2524frnd 6755 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ)
261, 25eqsstrid 4057 . 2 (𝜑𝑅 ⊆ ℝ)
2710simprd 495 . . . . . 6 (𝜑𝑊 ∈ CBan)
28 bnnv 30898 . . . . . 6 (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec)
29 eqid 2740 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
3013, 29nvzcl 30666 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
3127, 28, 303syl 18 . . . . 5 (𝜑 → (0vec𝑊) ∈ 𝑌)
32 fvex 6933 . . . . . 6 (𝑁‘(𝐴𝑀𝑦)) ∈ V
33 eqid 2740 . . . . . 6 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
3432, 33dmmpti 6724 . . . . 5 dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌
3531, 34eleqtrrdi 2855 . . . 4 (𝜑 → (0vec𝑊) ∈ dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
3635ne0d 4365 . . 3 (𝜑 → dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅)
37 dm0rn0 5949 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
381eqeq1i 2745 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
3937, 38bitr4i 278 . . . 4 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅)
4039necon3bii 2999 . . 3 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅)
4136, 40sylib 218 . 2 (𝜑𝑅 ≠ ∅)
4212, 21nvge0 30705 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
435, 20, 42syl2anc 583 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4443ralrimiva 3152 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4532rgenw 3071 . . . . 5 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
46 breq2 5170 . . . . . 6 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4733, 46ralrnmptw 7128 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4845, 47ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4944, 48sylibr 234 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
501raleqi 3332 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
5149, 50sylibr 234 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
5226, 41, 513jca 1128 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  cle 11325  MetOpencmopn 21377  NrmCVeccnv 30616  BaseSetcba 30618  0veccn0v 30620  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623  SubSpcss 30753  CPreHilOLDccphlo 30844  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ssp 30754  df-ph 30845  df-cbn 30895
This theorem is referenced by:  minvecolem2  30907  minvecolem3  30908  minvecolem4c  30911  minvecolem4  30912  minvecolem5  30913  minvecolem6  30914
  Copyright terms: Public domain W3C validator