![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvinxp | Structured version Visualization version GIF version |
Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
br1cnvinxp | ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5804 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
2 | 1 | relbrcnv 6096 | . 2 ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ 𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶) |
3 | brinxp2 5743 | . 2 ⊢ (𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶 ↔ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ 𝐷𝑅𝐶)) | |
4 | ancom 460 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴)) | |
5 | 4 | anbi1i 623 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ 𝐷𝑅𝐶) ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∩ cin 3939 class class class wbr 5138 × cxp 5664 ◡ccnv 5665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 |
This theorem is referenced by: br1cnvres 37627 |
Copyright terms: Public domain | W3C validator |