Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvinxp Structured version   Visualization version   GIF version

Theorem br1cnvinxp 38218
Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvinxp (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))

Proof of Theorem br1cnvinxp
StepHypRef Expression
1 relinxp 5768 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
21relbrcnv 6067 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶)
3 brinxp2 5709 . 2 (𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶 ↔ ((𝐷𝐴𝐶𝐵) ∧ 𝐷𝑅𝐶))
4 ancom 460 . . 3 ((𝐷𝐴𝐶𝐵) ↔ (𝐶𝐵𝐷𝐴))
54anbi1i 624 . 2 (((𝐷𝐴𝐶𝐵) ∧ 𝐷𝑅𝐶) ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))
62, 3, 53bitri 297 1 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3910   class class class wbr 5102   × cxp 5629  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639
This theorem is referenced by:  br1cnvres  38231
  Copyright terms: Public domain W3C validator