Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvinxp Structured version   Visualization version   GIF version

Theorem br1cnvinxp 38299
Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvinxp (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))

Proof of Theorem br1cnvinxp
StepHypRef Expression
1 relinxp 5753 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
21relbrcnv 6055 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶)
3 brinxp2 5692 . 2 (𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶 ↔ ((𝐷𝐴𝐶𝐵) ∧ 𝐷𝑅𝐶))
4 ancom 460 . . 3 ((𝐷𝐴𝐶𝐵) ↔ (𝐶𝐵𝐷𝐴))
54anbi1i 624 . 2 (((𝐷𝐴𝐶𝐵) ∧ 𝐷𝑅𝐶) ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))
62, 3, 53bitri 297 1 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  cin 3896   class class class wbr 5089   × cxp 5612  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  br1cnvres  38312
  Copyright terms: Public domain W3C validator