Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvinxp Structured version   Visualization version   GIF version

Theorem br1cnvinxp 37614
Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvinxp (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))

Proof of Theorem br1cnvinxp
StepHypRef Expression
1 relinxp 5804 . . 3 Rel (𝑅 ∩ (𝐴 × 𝐵))
21relbrcnv 6096 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶)
3 brinxp2 5743 . 2 (𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶 ↔ ((𝐷𝐴𝐶𝐵) ∧ 𝐷𝑅𝐶))
4 ancom 460 . . 3 ((𝐷𝐴𝐶𝐵) ↔ (𝐶𝐵𝐷𝐴))
54anbi1i 623 . 2 (((𝐷𝐴𝐶𝐵) ∧ 𝐷𝑅𝐶) ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))
62, 3, 53bitri 297 1 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐵𝐷𝐴) ∧ 𝐷𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2098  cin 3939   class class class wbr 5138   × cxp 5664  ccnv 5665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674
This theorem is referenced by:  br1cnvres  37627
  Copyright terms: Public domain W3C validator