![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvinxp | Structured version Visualization version GIF version |
Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
br1cnvinxp | ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relinxp 5827 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
2 | 1 | relbrcnv 6128 | . 2 ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ 𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶) |
3 | brinxp2 5766 | . 2 ⊢ (𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶 ↔ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ 𝐷𝑅𝐶)) | |
4 | ancom 460 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴)) | |
5 | 4 | anbi1i 624 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ 𝐷𝑅𝐶) ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∩ cin 3962 class class class wbr 5148 × cxp 5687 ◡ccnv 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 |
This theorem is referenced by: br1cnvres 38251 |
Copyright terms: Public domain | W3C validator |