| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvinxp | Structured version Visualization version GIF version | ||
| Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| br1cnvinxp | ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp 5768 | . . 3 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) | |
| 2 | 1 | relbrcnv 6067 | . 2 ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ 𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶) |
| 3 | brinxp2 5709 | . 2 ⊢ (𝐷(𝑅 ∩ (𝐴 × 𝐵))𝐶 ↔ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ 𝐷𝑅𝐶)) | |
| 4 | ancom 460 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴)) | |
| 5 | 4 | anbi1i 624 | . 2 ⊢ (((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) ∧ 𝐷𝑅𝐶) ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
| 6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (𝐶◡(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) ∧ 𝐷𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3910 class class class wbr 5102 × cxp 5629 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: br1cnvres 38231 |
| Copyright terms: Public domain | W3C validator |