![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvres | Structured version Visualization version GIF version |
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
br1cnvres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5678 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
2 | 1 | cnveqi 5864 | . . 3 ⊢ ◡(𝑅 ↾ 𝐴) = ◡(𝑅 ∩ (𝐴 × V)) |
3 | 2 | breqi 5144 | . 2 ⊢ (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵◡(𝑅 ∩ (𝐴 × V))𝐶) |
4 | elex 3485 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
5 | br1cnvinxp 37580 | . . . . 5 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵)) | |
6 | anass 468 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) | |
7 | 5, 6 | bitri 275 | . . . 4 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
8 | 7 | baib 535 | . . 3 ⊢ (𝐵 ∈ V → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
9 | 4, 8 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
10 | 3, 9 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 ∩ cin 3939 class class class wbr 5138 × cxp 5664 ◡ccnv 5665 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-res 5678 |
This theorem is referenced by: coss1cnvres 37743 |
Copyright terms: Public domain | W3C validator |