| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvres | Structured version Visualization version GIF version | ||
| Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| br1cnvres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5677 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
| 2 | 1 | cnveqi 5865 | . . 3 ⊢ ◡(𝑅 ↾ 𝐴) = ◡(𝑅 ∩ (𝐴 × V)) |
| 3 | 2 | breqi 5129 | . 2 ⊢ (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵◡(𝑅 ∩ (𝐴 × V))𝐶) |
| 4 | elex 3484 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 5 | br1cnvinxp 38216 | . . . . 5 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵)) | |
| 6 | anass 468 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| 8 | 7 | baib 535 | . . 3 ⊢ (𝐵 ∈ V → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| 10 | 3, 9 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 class class class wbr 5123 × cxp 5663 ◡ccnv 5664 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-res 5677 |
| This theorem is referenced by: coss1cnvres 38377 |
| Copyright terms: Public domain | W3C validator |