| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvres | Structured version Visualization version GIF version | ||
| Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| br1cnvres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5650 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
| 2 | 1 | cnveqi 5838 | . . 3 ⊢ ◡(𝑅 ↾ 𝐴) = ◡(𝑅 ∩ (𝐴 × V)) |
| 3 | 2 | breqi 5113 | . 2 ⊢ (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵◡(𝑅 ∩ (𝐴 × V))𝐶) |
| 4 | elex 3468 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 5 | br1cnvinxp 38245 | . . . . 5 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵)) | |
| 6 | anass 468 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| 8 | 7 | baib 535 | . . 3 ⊢ (𝐵 ∈ V → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| 10 | 3, 9 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 class class class wbr 5107 × cxp 5636 ◡ccnv 5637 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-res 5650 |
| This theorem is referenced by: coss1cnvres 38408 |
| Copyright terms: Public domain | W3C validator |