Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvres Structured version   Visualization version   GIF version

Theorem br1cnvres 37593
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvres (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))

Proof of Theorem br1cnvres
StepHypRef Expression
1 df-res 5678 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21cnveqi 5864 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
32breqi 5144 . 2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × V))𝐶)
4 elex 3485 . . 3 (𝐵𝑉𝐵 ∈ V)
5 br1cnvinxp 37580 . . . . 5 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵))
6 anass 468 . . . . 5 (((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
75, 6bitri 275 . . . 4 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
87baib 535 . . 3 (𝐵 ∈ V → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
94, 8syl 17 . 2 (𝐵𝑉 → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
103, 9bitrid 283 1 (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  Vcvv 3466  cin 3939   class class class wbr 5138   × cxp 5664  ccnv 5665  cres 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-res 5678
This theorem is referenced by:  coss1cnvres  37743
  Copyright terms: Public domain W3C validator