Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvres Structured version   Visualization version   GIF version

Theorem br1cnvres 38225
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvres (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))

Proof of Theorem br1cnvres
StepHypRef Expression
1 df-res 5712 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21cnveqi 5899 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
32breqi 5172 . 2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × V))𝐶)
4 elex 3509 . . 3 (𝐵𝑉𝐵 ∈ V)
5 br1cnvinxp 38212 . . . . 5 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵))
6 anass 468 . . . . 5 (((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
75, 6bitri 275 . . . 4 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
87baib 535 . . 3 (𝐵 ∈ V → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
94, 8syl 17 . 2 (𝐵𝑉 → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
103, 9bitrid 283 1 (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488  cin 3975   class class class wbr 5166   × cxp 5698  ccnv 5699  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-res 5712
This theorem is referenced by:  coss1cnvres  38373
  Copyright terms: Public domain W3C validator