Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvres Structured version   Visualization version   GIF version

Theorem br1cnvres 38253
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvres (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))

Proof of Theorem br1cnvres
StepHypRef Expression
1 df-res 5652 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21cnveqi 5840 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
32breqi 5115 . 2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × V))𝐶)
4 elex 3471 . . 3 (𝐵𝑉𝐵 ∈ V)
5 br1cnvinxp 38240 . . . . 5 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵))
6 anass 468 . . . . 5 (((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
75, 6bitri 275 . . . 4 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
87baib 535 . . 3 (𝐵 ∈ V → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
94, 8syl 17 . 2 (𝐵𝑉 → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
103, 9bitrid 283 1 (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3450  cin 3915   class class class wbr 5109   × cxp 5638  ccnv 5639  cres 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-res 5652
This theorem is referenced by:  coss1cnvres  38403
  Copyright terms: Public domain W3C validator