Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvres Structured version   Visualization version   GIF version

Theorem br1cnvres 38251
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.)
Assertion
Ref Expression
br1cnvres (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))

Proof of Theorem br1cnvres
StepHypRef Expression
1 df-res 5643 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21cnveqi 5828 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
32breqi 5108 . 2 (𝐵(𝑅𝐴)𝐶𝐵(𝑅 ∩ (𝐴 × V))𝐶)
4 elex 3465 . . 3 (𝐵𝑉𝐵 ∈ V)
5 br1cnvinxp 38238 . . . . 5 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵))
6 anass 468 . . . . 5 (((𝐵 ∈ V ∧ 𝐶𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
75, 6bitri 275 . . . 4 (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶𝐴𝐶𝑅𝐵)))
87baib 535 . . 3 (𝐵 ∈ V → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
94, 8syl 17 . 2 (𝐵𝑉 → (𝐵(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
103, 9bitrid 283 1 (𝐵𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐶𝐴𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444  cin 3910   class class class wbr 5102   × cxp 5629  ccnv 5630  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-res 5643
This theorem is referenced by:  coss1cnvres  38401
  Copyright terms: Public domain W3C validator