![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvres | Structured version Visualization version GIF version |
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019.) |
Ref | Expression |
---|---|
br1cnvres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
2 | 1 | cnveqi 5899 | . . 3 ⊢ ◡(𝑅 ↾ 𝐴) = ◡(𝑅 ∩ (𝐴 × V)) |
3 | 2 | breqi 5172 | . 2 ⊢ (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ 𝐵◡(𝑅 ∩ (𝐴 × V))𝐶) |
4 | elex 3509 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
5 | br1cnvinxp 38212 | . . . . 5 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵)) | |
6 | anass 468 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) ∧ 𝐶𝑅𝐵) ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) | |
7 | 5, 6 | bitri 275 | . . . 4 ⊢ (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐵 ∈ V ∧ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
8 | 7 | baib 535 | . . 3 ⊢ (𝐵 ∈ V → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
9 | 4, 8 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ∩ (𝐴 × V))𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
10 | 3, 9 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡(𝑅 ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-res 5712 |
This theorem is referenced by: coss1cnvres 38373 |
Copyright terms: Public domain | W3C validator |