![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releleccnv | Structured version Visualization version GIF version |
Description: Elementhood in a converse 𝑅-coset when 𝑅 is a relation. (Contributed by Peter Mazsa, 9-Dec-2018.) |
Ref | Expression |
---|---|
releleccnv | ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6106 | . . 3 ⊢ Rel ◡𝑅 | |
2 | relelec 8773 | . . 3 ⊢ (Rel ◡𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐵◡𝑅𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐵◡𝑅𝐴) |
4 | relbrcnvg 6107 | . 2 ⊢ (Rel 𝑅 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
5 | 3, 4 | bitrid 282 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 class class class wbr 5145 ◡ccnv 5673 Rel wrel 5679 [cec 8724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-xp 5680 df-rel 5681 df-cnv 5682 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ec 8728 |
This theorem is referenced by: releccnveq 37969 |
Copyright terms: Public domain | W3C validator |