Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releleccnv Structured version   Visualization version   GIF version

Theorem releleccnv 38219
Description: Elementhood in a converse 𝑅-coset when 𝑅 is a relation. (Contributed by Peter Mazsa, 9-Dec-2018.)
Assertion
Ref Expression
releleccnv (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐴𝑅𝐵))

Proof of Theorem releleccnv
StepHypRef Expression
1 relcnv 6064 . . 3 Rel 𝑅
2 relelec 8695 . . 3 (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
31, 2ax-mp 5 . 2 (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
4 relbrcnvg 6065 . 2 (Rel 𝑅 → (𝐵𝑅𝐴𝐴𝑅𝐵))
53, 4bitrid 283 1 (Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5102  ccnv 5630  Rel wrel 5636  [cec 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650
This theorem is referenced by:  releccnveq  38220
  Copyright terms: Public domain W3C validator