![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > releleccnv | Structured version Visualization version GIF version |
Description: Elementhood in a converse 𝑅-coset when 𝑅 is a relation. (Contributed by Peter Mazsa, 9-Dec-2018.) |
Ref | Expression |
---|---|
releleccnv | ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6125 | . . 3 ⊢ Rel ◡𝑅 | |
2 | relelec 8791 | . . 3 ⊢ (Rel ◡𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐵◡𝑅𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐵◡𝑅𝐴) |
4 | relbrcnvg 6126 | . 2 ⊢ (Rel 𝑅 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
5 | 3, 4 | bitrid 283 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ [𝐵]◡𝑅 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 ◡ccnv 5688 Rel wrel 5694 [cec 8742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 |
This theorem is referenced by: releccnveq 38240 |
Copyright terms: Public domain | W3C validator |