Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2coss Structured version   Visualization version   GIF version

Theorem br2coss 38560
Description: Cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.)
Assertion
Ref Expression
br2coss ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))

Proof of Theorem br2coss
StepHypRef Expression
1 brcoss3 38555 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
2 cnvcosseq 38559 . . . . 5 𝑅 = ≀ 𝑅
32eceq2i 8670 . . . 4 [𝐴]𝑅 = [𝐴] ≀ 𝑅
42eceq2i 8670 . . . 4 [𝐵]𝑅 = [𝐵] ≀ 𝑅
53, 4ineq12i 4167 . . 3 ([𝐴]𝑅 ∩ [𝐵]𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅)
65neeq1i 2993 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)
71, 6bitrdi 287 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wne 2929  cin 3897  c0 4282   class class class wbr 5093  ccnv 5618  [cec 8626  ccoss 38242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-coss 38533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator