Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2coss Structured version   Visualization version   GIF version

Theorem br2coss 36561
Description: Cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.)
Assertion
Ref Expression
br2coss ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))

Proof of Theorem br2coss
StepHypRef Expression
1 brcoss3 36556 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
2 cnvcosseq 36560 . . . . 5 𝑅 = ≀ 𝑅
32eceq2i 8539 . . . 4 [𝐴]𝑅 = [𝐴] ≀ 𝑅
42eceq2i 8539 . . . 4 [𝐵]𝑅 = [𝐵] ≀ 𝑅
53, 4ineq12i 4144 . . 3 ([𝐴]𝑅 ∩ [𝐵]𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅)
65neeq1i 3008 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)
71, 6bitrdi 287 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2943  cin 3886  c0 4256   class class class wbr 5074  ccnv 5588  [cec 8496  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-coss 36537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator