Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2coss Structured version   Visualization version   GIF version

Theorem br2coss 35214
Description: Cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.)
Assertion
Ref Expression
br2coss ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))

Proof of Theorem br2coss
StepHypRef Expression
1 brcoss3 35209 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
2 cnvcosseq 35213 . . . . 5 𝑅 = ≀ 𝑅
32eceq2i 8180 . . . 4 [𝐴]𝑅 = [𝐴] ≀ 𝑅
42eceq2i 8180 . . . 4 [𝐵]𝑅 = [𝐵] ≀ 𝑅
53, 4ineq12i 4107 . . 3 ([𝐴]𝑅 ∩ [𝐵]𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅)
65neeq1i 3048 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)
71, 6syl6bb 288 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2081  wne 2984  cin 3858  c0 4211   class class class wbr 4962  ccnv 5442  [cec 8137  ccoss 34985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-xp 5449  df-rel 5450  df-cnv 5451  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ec 8141  df-coss 35190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator