Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2coss Structured version   Visualization version   GIF version

Theorem br2coss 38456
Description: Cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.)
Assertion
Ref Expression
br2coss ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))

Proof of Theorem br2coss
StepHypRef Expression
1 brcoss3 38451 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
2 cnvcosseq 38455 . . . . 5 𝑅 = ≀ 𝑅
32eceq2i 8761 . . . 4 [𝐴]𝑅 = [𝐴] ≀ 𝑅
42eceq2i 8761 . . . 4 [𝐵]𝑅 = [𝐵] ≀ 𝑅
53, 4ineq12i 4193 . . 3 ([𝐴]𝑅 ∩ [𝐵]𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅)
65neeq1i 2996 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)
71, 6bitrdi 287 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wne 2932  cin 3925  c0 4308   class class class wbr 5119  ccnv 5653  [cec 8717  ccoss 38199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721  df-coss 38429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator