Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br2coss | Structured version Visualization version GIF version |
Description: Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
Ref | Expression |
---|---|
br2coss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss3 36293 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅)) | |
2 | cnvcosseq 36297 | . . . . 5 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | |
3 | 2 | eceq2i 8432 | . . . 4 ⊢ [𝐴]◡ ≀ 𝑅 = [𝐴] ≀ 𝑅 |
4 | 2 | eceq2i 8432 | . . . 4 ⊢ [𝐵]◡ ≀ 𝑅 = [𝐵] ≀ 𝑅 |
5 | 3, 4 | ineq12i 4125 | . . 3 ⊢ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) |
6 | 5 | neeq1i 3005 | . 2 ⊢ (([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅) |
7 | 1, 6 | bitrdi 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ≠ wne 2940 ∩ cin 3865 ∅c0 4237 class class class wbr 5053 ◡ccnv 5550 [cec 8389 ≀ ccoss 36070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ec 8393 df-coss 36274 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |