| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br2coss | Structured version Visualization version GIF version | ||
| Description: Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| br2coss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcoss3 38431 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅)) | |
| 2 | cnvcosseq 38435 | . . . . 5 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | |
| 3 | 2 | eceq2i 8716 | . . . 4 ⊢ [𝐴]◡ ≀ 𝑅 = [𝐴] ≀ 𝑅 |
| 4 | 2 | eceq2i 8716 | . . . 4 ⊢ [𝐵]◡ ≀ 𝑅 = [𝐵] ≀ 𝑅 |
| 5 | 3, 4 | ineq12i 4184 | . . 3 ⊢ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) |
| 6 | 5 | neeq1i 2990 | . 2 ⊢ (([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅) |
| 7 | 1, 6 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ∅c0 4299 class class class wbr 5110 ◡ccnv 5640 [cec 8672 ≀ ccoss 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-coss 38409 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |