![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br2coss | Structured version Visualization version GIF version |
Description: Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
Ref | Expression |
---|---|
br2coss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss3 35209 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅)) | |
2 | cnvcosseq 35213 | . . . . 5 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | |
3 | 2 | eceq2i 8180 | . . . 4 ⊢ [𝐴]◡ ≀ 𝑅 = [𝐴] ≀ 𝑅 |
4 | 2 | eceq2i 8180 | . . . 4 ⊢ [𝐵]◡ ≀ 𝑅 = [𝐵] ≀ 𝑅 |
5 | 3, 4 | ineq12i 4107 | . . 3 ⊢ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) |
6 | 5 | neeq1i 3048 | . 2 ⊢ (([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅) |
7 | 1, 6 | syl6bb 288 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 ≠ wne 2984 ∩ cin 3858 ∅c0 4211 class class class wbr 4962 ◡ccnv 5442 [cec 8137 ≀ ccoss 34985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-xp 5449 df-rel 5450 df-cnv 5451 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-ec 8141 df-coss 35190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |