Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossres2 | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.) |
Ref | Expression |
---|---|
br1cossres2 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossres 36549 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝑥𝑅𝐵 ∧ 𝑥𝑅𝐶))) | |
2 | exanres3 36418 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅) ↔ ∃𝑥 ∈ 𝐴 (𝑥𝑅𝐵 ∧ 𝑥𝑅𝐶))) | |
3 | 1, 2 | bitr4d 281 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ↾ 𝐴)𝐶 ↔ ∃𝑥 ∈ 𝐴 (𝐵 ∈ [𝑥]𝑅 ∧ 𝐶 ∈ [𝑥]𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5075 ↾ cres 5588 [cec 8485 ≀ ccoss 36320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-xp 5592 df-cnv 5594 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-ec 8489 df-coss 36524 |
This theorem is referenced by: relbrcoss 36551 |
Copyright terms: Public domain | W3C validator |