Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossres2 Structured version   Visualization version   GIF version

Theorem br1cossres2 35216
 Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.)
Assertion
Ref Expression
br1cossres2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem br1cossres2
StepHypRef Expression
1 br1cossres 35215 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝑥𝑅𝐵𝑥𝑅𝐶)))
2 exanres3 35085 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅) ↔ ∃𝑥𝐴 (𝑥𝑅𝐵𝑥𝑅𝐶)))
31, 2bitr4d 283 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∈ wcel 2081  ∃wrex 3106   class class class wbr 4962   ↾ cres 5445  [cec 8137   ≀ ccoss 34985 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-xp 5449  df-cnv 5451  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ec 8141  df-coss 35190 This theorem is referenced by:  relbrcoss  35217
 Copyright terms: Public domain W3C validator