Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossres2 Structured version   Visualization version   GIF version

Theorem br1cossres2 36550
Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.)
Assertion
Ref Expression
br1cossres2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem br1cossres2
StepHypRef Expression
1 br1cossres 36549 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝑥𝑅𝐵𝑥𝑅𝐶)))
2 exanres3 36418 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅) ↔ ∃𝑥𝐴 (𝑥𝑅𝐵𝑥𝑅𝐶)))
31, 2bitr4d 281 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065   class class class wbr 5075  cres 5588  [cec 8485  ccoss 36320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5076  df-opab 5138  df-xp 5592  df-cnv 5594  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-ec 8489  df-coss 36524
This theorem is referenced by:  relbrcoss  36551
  Copyright terms: Public domain W3C validator