Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossres2 Structured version   Visualization version   GIF version

Theorem br1cossres2 38424
Description: 𝐵 and 𝐶 are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018.)
Assertion
Ref Expression
br1cossres2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem br1cossres2
StepHypRef Expression
1 br1cossres 38423 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝑥𝑅𝐵𝑥𝑅𝐶)))
2 exanres3 38277 . 2 ((𝐵𝑉𝐶𝑊) → (∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅) ↔ ∃𝑥𝐴 (𝑥𝑅𝐵𝑥𝑅𝐶)))
31, 2bitr4d 282 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅𝐴)𝐶 ↔ ∃𝑥𝐴 (𝐵 ∈ [𝑥]𝑅𝐶 ∈ [𝑥]𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3053   class class class wbr 5102  cres 5633  [cec 8646  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-coss 38395
This theorem is referenced by:  relbrcoss  38430
  Copyright terms: Public domain W3C validator