Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brid Structured version   Visualization version   GIF version

Theorem brid 38289
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.)
Assertion
Ref Expression
brid (𝐴 I 𝐵𝐵 I 𝐴)

Proof of Theorem brid
StepHypRef Expression
1 cnvi 6116 . . 3 I = I
21breqi 5115 . 2 (𝐴 I 𝐵𝐴 I 𝐵)
3 reli 5791 . . 3 Rel I
43relbrcnv 6080 . 2 (𝐴 I 𝐵𝐵 I 𝐴)
52, 4bitr3i 277 1 (𝐴 I 𝐵𝐵 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   class class class wbr 5109   I cid 5534  ccnv 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648
This theorem is referenced by:  ideq2  38290
  Copyright terms: Public domain W3C validator