Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brid Structured version   Visualization version   GIF version

Theorem brid 37773
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.)
Assertion
Ref Expression
brid (𝐴 I 𝐵𝐵 I 𝐴)

Proof of Theorem brid
StepHypRef Expression
1 cnvi 6141 . . 3 I = I
21breqi 5149 . 2 (𝐴 I 𝐵𝐴 I 𝐵)
3 reli 5823 . . 3 Rel I
43relbrcnv 6106 . 2 (𝐴 I 𝐵𝐵 I 𝐴)
52, 4bitr3i 277 1 (𝐴 I 𝐵𝐵 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   class class class wbr 5143   I cid 5570  ccnv 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681
This theorem is referenced by:  ideq2  37774
  Copyright terms: Public domain W3C validator