Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brid Structured version   Visualization version   GIF version

Theorem brid 36430
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.)
Assertion
Ref Expression
brid (𝐴 I 𝐵𝐵 I 𝐴)

Proof of Theorem brid
StepHypRef Expression
1 cnvi 6043 . . 3 I = I
21breqi 5085 . 2 (𝐴 I 𝐵𝐴 I 𝐵)
3 reli 5734 . . 3 Rel I
43relbrcnv 6013 . 2 (𝐴 I 𝐵𝐵 I 𝐴)
52, 4bitr3i 276 1 (𝐴 I 𝐵𝐵 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   class class class wbr 5079   I cid 5488  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597
This theorem is referenced by:  ideq2  36431
  Copyright terms: Public domain W3C validator