Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brid Structured version   Visualization version   GIF version

Theorem brid 37669
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.)
Assertion
Ref Expression
brid (𝐴 I 𝐵𝐵 I 𝐴)

Proof of Theorem brid
StepHypRef Expression
1 cnvi 6132 . . 3 I = I
21breqi 5145 . 2 (𝐴 I 𝐵𝐴 I 𝐵)
3 reli 5817 . . 3 Rel I
43relbrcnv 6097 . 2 (𝐴 I 𝐵𝐵 I 𝐴)
52, 4bitr3i 277 1 (𝐴 I 𝐵𝐵 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   class class class wbr 5139   I cid 5564  ccnv 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675
This theorem is referenced by:  ideq2  37670
  Copyright terms: Public domain W3C validator