Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brid | Structured version Visualization version GIF version |
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.) |
Ref | Expression |
---|---|
brid | ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6034 | . . 3 ⊢ ◡ I = I | |
2 | 1 | breqi 5076 | . 2 ⊢ (𝐴◡ I 𝐵 ↔ 𝐴 I 𝐵) |
3 | reli 5725 | . . 3 ⊢ Rel I | |
4 | 3 | relbrcnv 6004 | . 2 ⊢ (𝐴◡ I 𝐵 ↔ 𝐵 I 𝐴) |
5 | 2, 4 | bitr3i 276 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 class class class wbr 5070 I cid 5479 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: ideq2 36370 |
Copyright terms: Public domain | W3C validator |