Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brid Structured version   Visualization version   GIF version

Theorem brid 38302
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.)
Assertion
Ref Expression
brid (𝐴 I 𝐵𝐵 I 𝐴)

Proof of Theorem brid
StepHypRef Expression
1 cnvi 6169 . . 3 I = I
21breqi 5157 . 2 (𝐴 I 𝐵𝐴 I 𝐵)
3 reli 5843 . . 3 Rel I
43relbrcnv 6133 . 2 (𝐴 I 𝐵𝐵 I 𝐴)
52, 4bitr3i 277 1 (𝐴 I 𝐵𝐵 I 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   class class class wbr 5151   I cid 5586  ccnv 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701
This theorem is referenced by:  ideq2  38303
  Copyright terms: Public domain W3C validator