![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brid | Structured version Visualization version GIF version |
Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.) |
Ref | Expression |
---|---|
brid | ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6145 | . . 3 ⊢ ◡ I = I | |
2 | 1 | breqi 5151 | . 2 ⊢ (𝐴◡ I 𝐵 ↔ 𝐴 I 𝐵) |
3 | reli 5824 | . . 3 ⊢ Rel I | |
4 | 3 | relbrcnv 6109 | . 2 ⊢ (𝐴◡ I 𝐵 ↔ 𝐵 I 𝐴) |
5 | 2, 4 | bitr3i 276 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 class class class wbr 5145 I cid 5571 ◡ccnv 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 |
This theorem is referenced by: ideq2 38018 |
Copyright terms: Public domain | W3C validator |