| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brid | Structured version Visualization version GIF version | ||
| Description: Property of the identity binary relation. (Contributed by Peter Mazsa, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| brid | ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 6141 | . . 3 ⊢ ◡ I = I | |
| 2 | 1 | breqi 5129 | . 2 ⊢ (𝐴◡ I 𝐵 ↔ 𝐴 I 𝐵) |
| 3 | reli 5816 | . . 3 ⊢ Rel I | |
| 4 | 3 | relbrcnv 6105 | . 2 ⊢ (𝐴◡ I 𝐵 ↔ 𝐵 I 𝐴) |
| 5 | 2, 4 | bitr3i 277 | 1 ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 class class class wbr 5123 I cid 5557 ◡ccnv 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 |
| This theorem is referenced by: ideq2 38267 |
| Copyright terms: Public domain | W3C validator |