Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmec2d Structured version   Visualization version   GIF version

Theorem dmec2d 36420
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8520). (Contributed by Peter Mazsa, 12-Oct-2018.)
Hypothesis
Ref Expression
dmec2d.1 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmec2d (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))

Proof of Theorem dmec2d
StepHypRef Expression
1 eqidd 2740 . 2 (𝜑 → dom 𝑅 = dom 𝑅)
2 dmec2d.1 . 2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
31, 2dmecd 36419 1 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  dom cdm 5588  [cec 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ec 8474
This theorem is referenced by:  eqvrelth  36703
  Copyright terms: Public domain W3C validator