Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmec2d | Structured version Visualization version GIF version |
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8594). (Contributed by Peter Mazsa, 12-Oct-2018.) |
Ref | Expression |
---|---|
dmec2d.1 | ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) |
Ref | Expression |
---|---|
dmec2d | ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . 2 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
2 | dmec2d.1 | . 2 ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) | |
3 | 1, 2 | dmecd 36521 | 1 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 dom cdm 5607 [cec 8544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5613 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8548 |
This theorem is referenced by: eqvrelth 36829 |
Copyright terms: Public domain | W3C validator |