| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmec2d | Structured version Visualization version GIF version | ||
| Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8795). (Contributed by Peter Mazsa, 12-Oct-2018.) |
| Ref | Expression |
|---|---|
| dmec2d.1 | ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) |
| Ref | Expression |
|---|---|
| dmec2d | ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2738 | . 2 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
| 2 | dmec2d.1 | . 2 ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) | |
| 3 | 1, 2 | dmecd 38305 | 1 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 dom cdm 5685 [cec 8743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 |
| This theorem is referenced by: eqvrelth 38612 |
| Copyright terms: Public domain | W3C validator |