Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmec2d Structured version   Visualization version   GIF version

Theorem dmec2d 36522
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8594). (Contributed by Peter Mazsa, 12-Oct-2018.)
Hypothesis
Ref Expression
dmec2d.1 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmec2d (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))

Proof of Theorem dmec2d
StepHypRef Expression
1 eqidd 2738 . 2 (𝜑 → dom 𝑅 = dom 𝑅)
2 dmec2d.1 . 2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
31, 2dmecd 36521 1 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  dom cdm 5607  [cec 8544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-xp 5613  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ec 8548
This theorem is referenced by:  eqvrelth  36829
  Copyright terms: Public domain W3C validator