Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmec2d Structured version   Visualization version   GIF version

Theorem dmec2d 38261
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8813). (Contributed by Peter Mazsa, 12-Oct-2018.)
Hypothesis
Ref Expression
dmec2d.1 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmec2d (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))

Proof of Theorem dmec2d
StepHypRef Expression
1 eqidd 2741 . 2 (𝜑 → dom 𝑅 = dom 𝑅)
2 dmec2d.1 . 2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
31, 2dmecd 38260 1 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  dom cdm 5700  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765
This theorem is referenced by:  eqvrelth  38567
  Copyright terms: Public domain W3C validator