Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmec2d Structured version   Visualization version   GIF version

Theorem dmec2d 38286
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8793). (Contributed by Peter Mazsa, 12-Oct-2018.)
Hypothesis
Ref Expression
dmec2d.1 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmec2d (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))

Proof of Theorem dmec2d
StepHypRef Expression
1 eqidd 2735 . 2 (𝜑 → dom 𝑅 = dom 𝑅)
2 dmec2d.1 . 2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
31, 2dmecd 38285 1 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  dom cdm 5688  [cec 8741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ec 8745
This theorem is referenced by:  eqvrelth  38592
  Copyright terms: Public domain W3C validator