Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmec2d | Structured version Visualization version GIF version |
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8520). (Contributed by Peter Mazsa, 12-Oct-2018.) |
Ref | Expression |
---|---|
dmec2d.1 | ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) |
Ref | Expression |
---|---|
dmec2d | ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2740 | . 2 ⊢ (𝜑 → dom 𝑅 = dom 𝑅) | |
2 | dmec2d.1 | . 2 ⊢ (𝜑 → [𝐵]𝑅 = [𝐶]𝑅) | |
3 | 1, 2 | dmecd 36419 | 1 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐶 ∈ dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 dom cdm 5588 [cec 8470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ec 8474 |
This theorem is referenced by: eqvrelth 36703 |
Copyright terms: Public domain | W3C validator |