Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmec2d Structured version   Visualization version   GIF version

Theorem dmec2d 38363
Description: Equality of the coset of 𝐵 and the coset of 𝐶 implies equivalence of domain elementhood (equivalence is not necessary as opposed to ereldm 8681). (Contributed by Peter Mazsa, 12-Oct-2018.)
Hypothesis
Ref Expression
dmec2d.1 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
Assertion
Ref Expression
dmec2d (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))

Proof of Theorem dmec2d
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → dom 𝑅 = dom 𝑅)
2 dmec2d.1 . 2 (𝜑 → [𝐵]𝑅 = [𝐶]𝑅)
31, 2dmecd 38362 1 (𝜑 → (𝐵 ∈ dom 𝑅𝐶 ∈ dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  dom cdm 5619  [cec 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630
This theorem is referenced by:  eqvrelth  38727
  Copyright terms: Public domain W3C validator