![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ideq2 | Structured version Visualization version GIF version |
Description: For sets, the identity binary relation is the same as equality. (Contributed by Peter Mazsa, 24-Jun-2020.) (Revised by Peter Mazsa, 18-Dec-2021.) |
Ref | Expression |
---|---|
ideq2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brid 37175 | . 2 ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) | |
2 | ideqg 5852 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 I 𝐴 ↔ 𝐵 = 𝐴)) | |
3 | eqcom 2740 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | bitrdi 287 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 I 𝐴 ↔ 𝐴 = 𝐵)) |
5 | 1, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 I cid 5574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: br1cossinidres 37319 br1cossxrnidres 37321 |
Copyright terms: Public domain | W3C validator |