![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ideq2 | Structured version Visualization version GIF version |
Description: For sets, the identity binary relation is the same as equality. (Contributed by Peter Mazsa, 24-Jun-2020.) (Revised by Peter Mazsa, 18-Dec-2021.) |
Ref | Expression |
---|---|
ideq2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brid 38287 | . 2 ⊢ (𝐴 I 𝐵 ↔ 𝐵 I 𝐴) | |
2 | ideqg 5864 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 I 𝐴 ↔ 𝐵 = 𝐴)) | |
3 | eqcom 2741 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | bitrdi 287 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 I 𝐴 ↔ 𝐴 = 𝐵)) |
5 | 1, 4 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 I 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 I cid 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 |
This theorem is referenced by: br1cossinidres 38430 br1cossxrnidres 38432 |
Copyright terms: Public domain | W3C validator |