MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brimralrspcev Structured version   Visualization version   GIF version

Theorem brimralrspcev 5168
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brimralrspcev ((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝐴(𝑦)   𝑅(𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem brimralrspcev
StepHypRef Expression
1 breq2 5111 . . 3 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21anbi2d 630 . 2 (𝑥 = 𝐵 → ((𝜑𝐴𝑅𝑥) ↔ (𝜑𝐴𝑅𝐵)))
32rspceaimv 3594 1 ((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108
This theorem is referenced by:  dveflem  25883  mullimc  45614  limcdm0  45616  mullimcf  45621  constlimc  45622  idlimc  45624  limcleqr  45642  addlimc  45646  0ellimcdiv  45647  ioodvbdlimc1lem2  45930  ioodvbdlimc2lem  45932
  Copyright terms: Public domain W3C validator