MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveflem Structured version   Visualization version   GIF version

Theorem dveflem 26037
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 16157, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem 0(ℂ D exp)1

Proof of Theorem dveflem
Dummy variables 𝑘 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11282 . . 3 0 ∈ ℂ
2 eqid 2740 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32cnfldtop 24825 . . . 4 (TopOpen‘ℂfld) ∈ Top
4 unicntop 24827 . . . . 5 ℂ = (TopOpen‘ℂfld)
54ntrtop 23099 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
63, 5ax-mp 5 . . 3 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
71, 6eleqtrri 2843 . 2 0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ)
8 ax-1cn 11242 . . 3 1 ∈ ℂ
9 1rp 13061 . . . . . 6 1 ∈ ℝ+
10 ifcl 4593 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+)
119, 10mpan2 690 . . . . 5 (𝑥 ∈ ℝ+ → if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+)
12 eldifsn 4811 . . . . . . 7 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
13 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 𝑤 ∈ ℂ)
1413subid1d 11636 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (𝑤 − 0) = 𝑤)
1514fveq2d 6924 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (abs‘(𝑤 − 0)) = (abs‘𝑤))
1615breq1d 5176 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) ↔ (abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1)))
1713abscld 15485 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (abs‘𝑤) ∈ ℝ)
18 rpre 13065 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1918adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 𝑥 ∈ ℝ)
20 1red 11291 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 1 ∈ ℝ)
21 ltmin 13256 . . . . . . . . . . 11 (((abs‘𝑤) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2217, 19, 20, 21syl3anc 1371 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2316, 22bitrd 279 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
24 simplr 768 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
2524, 12sylibr 234 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ (ℂ ∖ {0}))
26 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (exp‘𝑧) = (exp‘𝑤))
2726oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((exp‘𝑧) − 1) = ((exp‘𝑤) − 1))
28 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤𝑧 = 𝑤)
2927, 28oveq12d 7466 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑤) − 1) / 𝑤))
30 eqid 2740 . . . . . . . . . . . . . 14 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))
31 ovex 7481 . . . . . . . . . . . . . 14 (((exp‘𝑤) − 1) / 𝑤) ∈ V
3229, 30, 31fvmpt 7029 . . . . . . . . . . . . 13 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3325, 32syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3433fvoveq1d 7470 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) = (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)))
35 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ ℂ)
36 efcl 16130 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (exp‘𝑤) ∈ ℂ)
38 1cnd 11285 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 1 ∈ ℂ)
3937, 38subcld 11647 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((exp‘𝑤) − 1) ∈ ℂ)
40 simplrr 777 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ≠ 0)
4139, 35, 40divcld 12070 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
4241, 38subcld 11647 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
4342abscld 15485 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
4435abscld 15485 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) ∈ ℝ)
45 simpll 766 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ+)
4645rpred 13099 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ)
47 abscl 15327 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
4847ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ)
4936ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) ∈ ℂ)
50 subcl 11535 . . . . . . . . . . . . . . . . . . . . 21 (((exp‘𝑤) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘𝑤) − 1) ∈ ℂ)
5149, 8, 50sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − 1) ∈ ℂ)
52 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 𝑤 ∈ ℂ)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 𝑤 ≠ 0)
5451, 52, 53divcld 12070 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
55 1cnd 11285 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℂ)
5654, 55subcld 11647 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
5756abscld 15485 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
5848, 57remulcld 11320 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ∈ ℝ)
5948resqcld 14175 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℝ)
60 3re 12373 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
61 4nn 12376 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
62 nndivre 12334 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℝ)
6360, 61, 62mp2an 691 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℝ
64 remulcl 11269 . . . . . . . . . . . . . . . . 17 ((((abs‘𝑤)↑2) ∈ ℝ ∧ (3 / 4) ∈ ℝ) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6559, 63, 64sylancl 585 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6651, 52subcld 11647 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) ∈ ℂ)
6766, 52, 53divcan2d 12072 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (((exp‘𝑤) − 1) − 𝑤))
6851, 52, 52, 53divsubdird 12109 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)))
6952, 53dividd 12068 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 𝑤) = 1)
7069oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7168, 70eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7271oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)))
7349, 55, 52subsub4d 11678 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = ((exp‘𝑤) − (1 + 𝑤)))
74 addcl 11266 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (1 + 𝑤) ∈ ℂ)
758, 52, 74sylancr 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (1 + 𝑤) ∈ ℂ)
76 2nn0 12570 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℕ0
77 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))
7877eftlcl 16155 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℂ ∧ 2 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
7952, 76, 78sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
80 df-2 12356 . . . . . . . . . . . . . . . . . . . . . . . 24 2 = (1 + 1)
81 1nn0 12569 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
82 1e0p1 12800 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
83 0nn0 12568 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
84 0cnd 11283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 ∈ ℂ)
8577efval2 16132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
87 nn0uz 12945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (ℤ‘0)
8887sumeq1i 15745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)
8986, 88eqtr2di 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = (exp‘𝑤))
9089oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = (0 + (exp‘𝑤)))
9149addlidd 11491 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + (exp‘𝑤)) = (exp‘𝑤))
9290, 91eqtr2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
93 eft0val 16160 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℂ → ((𝑤↑0) / (!‘0)) = 1)
9493ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑0) / (!‘0)) = 1)
9594oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = (0 + 1))
9695, 82eqtr4di 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = 1)
9777, 82, 83, 52, 84, 92, 96efsep 16158 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (1 + Σ𝑘 ∈ (ℤ‘1)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
98 exp1 14118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (𝑤↑1) = 𝑤)
9998ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤↑1) = 𝑤)
10099oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / (!‘1)))
101 fac1 14326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (!‘1) = 1
102101oveq2i 7459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 / (!‘1)) = (𝑤 / 1)
103100, 102eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / 1))
104 div1 11984 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℂ → (𝑤 / 1) = 𝑤)
105104ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 1) = 𝑤)
106103, 105eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = 𝑤)
107106oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (1 + ((𝑤↑1) / (!‘1))) = (1 + 𝑤))
10877, 80, 81, 52, 55, 97, 107efsep 16158 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = ((1 + 𝑤) + Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
10975, 79, 108mvrladdd 11703 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − (1 + 𝑤)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11073, 109eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11167, 72, 1103eqtr3d 2788 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
112111fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
11352, 56absmuld 15503 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
114112, 113eqtr3d 2782 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
115 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛)))
116 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛)))
117 2nn 12366 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
118117a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 2 ∈ ℕ)
119 1red 11291 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℝ)
120 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) < 1)
12148, 119, 120ltled 11438 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ≤ 1)
12277, 115, 116, 118, 52, 121eftlub 16157 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
123114, 122eqbrtrrd 5190 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
124 df-3 12357 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
125 fac2 14328 . . . . . . . . . . . . . . . . . . . . 21 (!‘2) = 2
126125oveq1i 7458 . . . . . . . . . . . . . . . . . . . 20 ((!‘2) · 2) = (2 · 2)
127 2t2e4 12457 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
128126, 127eqtr2i 2769 . . . . . . . . . . . . . . . . . . 19 4 = ((!‘2) · 2)
129124, 128oveq12i 7460 . . . . . . . . . . . . . . . . . 18 (3 / 4) = ((2 + 1) / ((!‘2) · 2))
130129oveq2i 7459 . . . . . . . . . . . . . . . . 17 (((abs‘𝑤)↑2) · (3 / 4)) = (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2)))
131123, 130breqtrrdi 5208 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · (3 / 4)))
13263a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ∈ ℝ)
13348sqge0d 14187 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 ≤ ((abs‘𝑤)↑2))
134 1re 11290 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
135 3lt4 12467 . . . . . . . . . . . . . . . . . . . . . 22 3 < 4
136 4cn 12378 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
137136mulridi 11294 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 1) = 4
138135, 137breqtrri 5193 . . . . . . . . . . . . . . . . . . . . 21 3 < (4 · 1)
139 4re 12377 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
140 4pos 12400 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 4
141139, 140pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℝ ∧ 0 < 4)
142 ltdivmul 12170 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((3 / 4) < 1 ↔ 3 < (4 · 1)))
14360, 134, 141, 142mp3an 1461 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 4) < 1 ↔ 3 < (4 · 1))
144138, 143mpbir 231 . . . . . . . . . . . . . . . . . . . 20 (3 / 4) < 1
14563, 134, 144ltleii 11413 . . . . . . . . . . . . . . . . . . 19 (3 / 4) ≤ 1
146145a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ≤ 1)
147132, 119, 59, 133, 146lemul2ad 12235 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ (((abs‘𝑤)↑2) · 1))
14848recnd 11318 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℂ)
149148sqcld 14194 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℂ)
150149mulridd 11307 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · 1) = ((abs‘𝑤)↑2))
151147, 150breqtrd 5192 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ ((abs‘𝑤)↑2))
15258, 65, 59, 131, 151letrd 11447 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤)↑2))
153148sqvald 14193 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) = ((abs‘𝑤) · (abs‘𝑤)))
154152, 153breqtrd 5192 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤)))
155 absgt0 15373 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (𝑤 ≠ 0 ↔ 0 < (abs‘𝑤)))
156155ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 ≠ 0 ↔ 0 < (abs‘𝑤)))
15753, 156mpbid 232 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 < (abs‘𝑤))
15848, 157elrpd 13096 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ+)
15957, 48, 158lemul2d 13143 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤) ↔ ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤))))
160154, 159mpbird 257 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
161160ad2ant2l 745 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
162 simprl 770 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) < 𝑥)
16343, 44, 46, 161, 162lelttrd 11448 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) < 𝑥)
16434, 163eqbrtrd 5188 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
165164ex 412 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16623, 165sylbid 240 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
167166adantld 490 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16812, 167sylan2b 593 . . . . . 6 ((𝑥 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})) → ((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
169168ralrimiva 3152 . . . . 5 (𝑥 ∈ ℝ+ → ∀𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
170 brimralrspcev 5227 . . . . 5 ((if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+ ∧ ∀𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
17111, 169, 170syl2anc 583 . . . 4 (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
172171rgen 3069 . . 3 𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
173 eldifi 4154 . . . . . . . . . 10 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
174 efcl 16130 . . . . . . . . . 10 (𝑧 ∈ ℂ → (exp‘𝑧) ∈ ℂ)
175173, 174syl 17 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → (exp‘𝑧) ∈ ℂ)
176 1cnd 11285 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → 1 ∈ ℂ)
177175, 176subcld 11647 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → ((exp‘𝑧) − 1) ∈ ℂ)
178 eldifsni 4815 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
179177, 173, 178divcld 12070 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − 1) / 𝑧) ∈ ℂ)
18030, 179fmpti 7146 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)):(ℂ ∖ {0})⟶ℂ
181180a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
182 difssd 4160 . . . . 5 (⊤ → (ℂ ∖ {0}) ⊆ ℂ)
183 0cnd 11283 . . . . 5 (⊤ → 0 ∈ ℂ)
184181, 182, 183ellimc3 25934 . . . 4 (⊤ → (1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))))
185184mptru 1544 . . 3 (1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)))
1868, 172, 185mpbir2an 710 . 2 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)
1872cnfldtopon 24824 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
188187toponrestid 22948 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
189173subid1d 11636 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → (𝑧 − 0) = 𝑧)
190189oveq2d 7464 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)) = (((exp‘𝑧) − (exp‘0)) / 𝑧))
191 ef0 16139 . . . . . . . 8 (exp‘0) = 1
192191oveq2i 7459 . . . . . . 7 ((exp‘𝑧) − (exp‘0)) = ((exp‘𝑧) − 1)
193192oveq1i 7458 . . . . . 6 (((exp‘𝑧) − (exp‘0)) / 𝑧) = (((exp‘𝑧) − 1) / 𝑧)
194190, 193eqtr2di 2797 . . . . 5 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
195194mpteq2ia 5269 . . . 4 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
196 ssidd 4032 . . . 4 (⊤ → ℂ ⊆ ℂ)
197 eff 16129 . . . . 5 exp:ℂ⟶ℂ
198197a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
199188, 2, 195, 196, 198, 196eldv 25953 . . 3 (⊤ → (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0))))
200199mptru 1544 . 2 (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)))
2017, 186, 200mpbir2an 710 1 0(ℂ D exp)1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  0cn0 12553  cuz 12903  +crp 13057  cexp 14112  !cfa 14322  abscabs 15283  Σcsu 15734  expce 16109  TopOpenctopn 17481  fldccnfld 21387  Topctop 22920  intcnt 23046   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-cnp 23257  df-xms 24351  df-ms 24352  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvef  26038
  Copyright terms: Public domain W3C validator