MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveflem Structured version   Visualization version   GIF version

Theorem dveflem 24580
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 15453, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem 0(ℂ D exp)1

Proof of Theorem dveflem
Dummy variables 𝑘 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10622 . . 3 0 ∈ ℂ
2 eqid 2822 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32cnfldtop 23387 . . . 4 (TopOpen‘ℂfld) ∈ Top
4 unicntop 23389 . . . . 5 ℂ = (TopOpen‘ℂfld)
54ntrtop 21673 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
63, 5ax-mp 5 . . 3 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
71, 6eleqtrri 2913 . 2 0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ)
8 ax-1cn 10584 . . 3 1 ∈ ℂ
9 1rp 12381 . . . . . 6 1 ∈ ℝ+
10 ifcl 4483 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+)
119, 10mpan2 690 . . . . 5 (𝑥 ∈ ℝ+ → if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+)
12 eldifsn 4693 . . . . . . 7 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
13 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 𝑤 ∈ ℂ)
1413subid1d 10975 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (𝑤 − 0) = 𝑤)
1514fveq2d 6656 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (abs‘(𝑤 − 0)) = (abs‘𝑤))
1615breq1d 5052 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) ↔ (abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1)))
1713abscld 14787 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (abs‘𝑤) ∈ ℝ)
18 rpre 12385 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1918adantr 484 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 𝑥 ∈ ℝ)
20 1red 10631 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 1 ∈ ℝ)
21 ltmin 12575 . . . . . . . . . . 11 (((abs‘𝑤) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2217, 19, 20, 21syl3anc 1368 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2316, 22bitrd 282 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
24 simplr 768 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
2524, 12sylibr 237 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ (ℂ ∖ {0}))
26 fveq2 6652 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (exp‘𝑧) = (exp‘𝑤))
2726oveq1d 7155 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((exp‘𝑧) − 1) = ((exp‘𝑤) − 1))
28 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤𝑧 = 𝑤)
2927, 28oveq12d 7158 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑤) − 1) / 𝑤))
30 eqid 2822 . . . . . . . . . . . . . 14 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))
31 ovex 7173 . . . . . . . . . . . . . 14 (((exp‘𝑤) − 1) / 𝑤) ∈ V
3229, 30, 31fvmpt 6750 . . . . . . . . . . . . 13 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3325, 32syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3433fvoveq1d 7162 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) = (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)))
35 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ ℂ)
36 efcl 15427 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (exp‘𝑤) ∈ ℂ)
38 1cnd 10625 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 1 ∈ ℂ)
3937, 38subcld 10986 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((exp‘𝑤) − 1) ∈ ℂ)
40 simplrr 777 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ≠ 0)
4139, 35, 40divcld 11405 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
4241, 38subcld 10986 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
4342abscld 14787 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
4435abscld 14787 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) ∈ ℝ)
45 simpll 766 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ+)
4645rpred 12419 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ)
47 abscl 14629 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
4847ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ)
4936ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) ∈ ℂ)
50 subcl 10874 . . . . . . . . . . . . . . . . . . . . 21 (((exp‘𝑤) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘𝑤) − 1) ∈ ℂ)
5149, 8, 50sylancl 589 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − 1) ∈ ℂ)
52 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 𝑤 ∈ ℂ)
53 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 𝑤 ≠ 0)
5451, 52, 53divcld 11405 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
55 1cnd 10625 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℂ)
5654, 55subcld 10986 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
5756abscld 14787 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
5848, 57remulcld 10660 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ∈ ℝ)
5948resqcld 13607 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℝ)
60 3re 11705 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
61 4nn 11708 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
62 nndivre 11666 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℝ)
6360, 61, 62mp2an 691 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℝ
64 remulcl 10611 . . . . . . . . . . . . . . . . 17 ((((abs‘𝑤)↑2) ∈ ℝ ∧ (3 / 4) ∈ ℝ) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6559, 63, 64sylancl 589 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6651, 52subcld 10986 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) ∈ ℂ)
6766, 52, 53divcan2d 11407 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (((exp‘𝑤) − 1) − 𝑤))
6851, 52, 52, 53divsubdird 11444 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)))
6952, 53dividd 11403 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 𝑤) = 1)
7069oveq2d 7156 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7168, 70eqtrd 2857 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7271oveq2d 7156 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)))
7349, 55, 52subsub4d 11017 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = ((exp‘𝑤) − (1 + 𝑤)))
74 addcl 10608 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (1 + 𝑤) ∈ ℂ)
758, 52, 74sylancr 590 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (1 + 𝑤) ∈ ℂ)
76 2nn0 11902 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℕ0
77 eqid 2822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))
7877eftlcl 15451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℂ ∧ 2 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
7952, 76, 78sylancl 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
80 df-2 11688 . . . . . . . . . . . . . . . . . . . . . . . 24 2 = (1 + 1)
81 1nn0 11901 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
82 1e0p1 12128 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
83 0nn0 11900 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
84 0cnd 10623 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 ∈ ℂ)
8577efval2 15428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
87 nn0uz 12268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (ℤ‘0)
8887sumeq1i 15046 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)
8986, 88syl6req 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = (exp‘𝑤))
9089oveq2d 7156 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = (0 + (exp‘𝑤)))
9149addid2d 10830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + (exp‘𝑤)) = (exp‘𝑤))
9290, 91eqtr2d 2858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
93 eft0val 15456 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℂ → ((𝑤↑0) / (!‘0)) = 1)
9493ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑0) / (!‘0)) = 1)
9594oveq2d 7156 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = (0 + 1))
9695, 82eqtr4di 2875 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = 1)
9777, 82, 83, 52, 84, 92, 96efsep 15454 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (1 + Σ𝑘 ∈ (ℤ‘1)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
98 exp1 13431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (𝑤↑1) = 𝑤)
9998ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤↑1) = 𝑤)
10099oveq1d 7155 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / (!‘1)))
101 fac1 13633 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (!‘1) = 1
102101oveq2i 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 / (!‘1)) = (𝑤 / 1)
103100, 102syl6eq 2873 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / 1))
104 div1 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℂ → (𝑤 / 1) = 𝑤)
105104ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 1) = 𝑤)
106103, 105eqtrd 2857 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = 𝑤)
107106oveq2d 7156 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (1 + ((𝑤↑1) / (!‘1))) = (1 + 𝑤))
10877, 80, 81, 52, 55, 97, 107efsep 15454 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = ((1 + 𝑤) + Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
10975, 79, 108mvrladdd 11042 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − (1 + 𝑤)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11073, 109eqtrd 2857 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11167, 72, 1103eqtr3d 2865 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
112111fveq2d 6656 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
11352, 56absmuld 14805 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
114112, 113eqtr3d 2859 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
115 eqid 2822 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛)))
116 eqid 2822 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛)))
117 2nn 11698 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
118117a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 2 ∈ ℕ)
119 1red 10631 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℝ)
120 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) < 1)
12148, 119, 120ltled 10777 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ≤ 1)
12277, 115, 116, 118, 52, 121eftlub 15453 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
123114, 122eqbrtrrd 5066 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
124 df-3 11689 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
125 fac2 13635 . . . . . . . . . . . . . . . . . . . . 21 (!‘2) = 2
126125oveq1i 7150 . . . . . . . . . . . . . . . . . . . 20 ((!‘2) · 2) = (2 · 2)
127 2t2e4 11789 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
128126, 127eqtr2i 2846 . . . . . . . . . . . . . . . . . . 19 4 = ((!‘2) · 2)
129124, 128oveq12i 7152 . . . . . . . . . . . . . . . . . 18 (3 / 4) = ((2 + 1) / ((!‘2) · 2))
130129oveq2i 7151 . . . . . . . . . . . . . . . . 17 (((abs‘𝑤)↑2) · (3 / 4)) = (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2)))
131123, 130breqtrrdi 5084 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · (3 / 4)))
13263a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ∈ ℝ)
13348sqge0d 13608 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 ≤ ((abs‘𝑤)↑2))
134 1re 10630 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
135 3lt4 11799 . . . . . . . . . . . . . . . . . . . . . 22 3 < 4
136 4cn 11710 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
137136mulid1i 10634 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 1) = 4
138135, 137breqtrri 5069 . . . . . . . . . . . . . . . . . . . . 21 3 < (4 · 1)
139 4re 11709 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
140 4pos 11732 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 4
141139, 140pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℝ ∧ 0 < 4)
142 ltdivmul 11504 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((3 / 4) < 1 ↔ 3 < (4 · 1)))
14360, 134, 141, 142mp3an 1458 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 4) < 1 ↔ 3 < (4 · 1))
144138, 143mpbir 234 . . . . . . . . . . . . . . . . . . . 20 (3 / 4) < 1
14563, 134, 144ltleii 10752 . . . . . . . . . . . . . . . . . . 19 (3 / 4) ≤ 1
146145a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ≤ 1)
147132, 119, 59, 133, 146lemul2ad 11569 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ (((abs‘𝑤)↑2) · 1))
14848recnd 10658 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℂ)
149148sqcld 13504 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℂ)
150149mulid1d 10647 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · 1) = ((abs‘𝑤)↑2))
151147, 150breqtrd 5068 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ ((abs‘𝑤)↑2))
15258, 65, 59, 131, 151letrd 10786 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤)↑2))
153148sqvald 13503 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) = ((abs‘𝑤) · (abs‘𝑤)))
154152, 153breqtrd 5068 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤)))
155 absgt0 14675 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (𝑤 ≠ 0 ↔ 0 < (abs‘𝑤)))
156155ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 ≠ 0 ↔ 0 < (abs‘𝑤)))
15753, 156mpbid 235 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 < (abs‘𝑤))
15848, 157elrpd 12416 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ+)
15957, 48, 158lemul2d 12463 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤) ↔ ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤))))
160154, 159mpbird 260 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
161160ad2ant2l 745 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
162 simprl 770 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) < 𝑥)
16343, 44, 46, 161, 162lelttrd 10787 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) < 𝑥)
16434, 163eqbrtrd 5064 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
165164ex 416 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16623, 165sylbid 243 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
167166adantld 494 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16812, 167sylan2b 596 . . . . . 6 ((𝑥 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})) → ((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
169168ralrimiva 3174 . . . . 5 (𝑥 ∈ ℝ+ → ∀𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
170 brimralrspcev 5103 . . . . 5 ((if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+ ∧ ∀𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
17111, 169, 170syl2anc 587 . . . 4 (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
172171rgen 3140 . . 3 𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
173 eldifi 4078 . . . . . . . . . 10 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
174 efcl 15427 . . . . . . . . . 10 (𝑧 ∈ ℂ → (exp‘𝑧) ∈ ℂ)
175173, 174syl 17 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → (exp‘𝑧) ∈ ℂ)
176 1cnd 10625 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → 1 ∈ ℂ)
177175, 176subcld 10986 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → ((exp‘𝑧) − 1) ∈ ℂ)
178 eldifsni 4696 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
179177, 173, 178divcld 11405 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − 1) / 𝑧) ∈ ℂ)
18030, 179fmpti 6858 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)):(ℂ ∖ {0})⟶ℂ
181180a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
182 difssd 4084 . . . . 5 (⊤ → (ℂ ∖ {0}) ⊆ ℂ)
183 0cnd 10623 . . . . 5 (⊤ → 0 ∈ ℂ)
184181, 182, 183ellimc3 24480 . . . 4 (⊤ → (1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))))
185184mptru 1545 . . 3 (1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)))
1868, 172, 185mpbir2an 710 . 2 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)
1872cnfldtopon 23386 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
188187toponrestid 21524 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
189173subid1d 10975 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → (𝑧 − 0) = 𝑧)
190189oveq2d 7156 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)) = (((exp‘𝑧) − (exp‘0)) / 𝑧))
191 ef0 15435 . . . . . . . 8 (exp‘0) = 1
192191oveq2i 7151 . . . . . . 7 ((exp‘𝑧) − (exp‘0)) = ((exp‘𝑧) − 1)
193192oveq1i 7150 . . . . . 6 (((exp‘𝑧) − (exp‘0)) / 𝑧) = (((exp‘𝑧) − 1) / 𝑧)
194190, 193syl6req 2874 . . . . 5 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
195194mpteq2ia 5133 . . . 4 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
196 ssidd 3965 . . . 4 (⊤ → ℂ ⊆ ℂ)
197 eff 15426 . . . . 5 exp:ℂ⟶ℂ
198197a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
199188, 2, 195, 196, 198, 196eldv 24499 . . 3 (⊤ → (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0))))
200199mptru 1545 . 2 (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)))
2017, 186, 200mpbir2an 710 1 0(ℂ D exp)1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wtru 1539  wcel 2114  wne 3011  wral 3130  wrex 3131  cdif 3905  ifcif 4439  {csn 4539   class class class wbr 5042  cmpt 5122  wf 6330  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  4c4 11682  0cn0 11885  cuz 12231  +crp 12377  cexp 13425  !cfa 13629  abscabs 14584  Σcsu 15033  expce 15406  TopOpenctopn 16686  fldccnfld 20089  Topctop 21496  intcnt 21620   lim climc 24463   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-plusg 16569  df-mulr 16570  df-starv 16571  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-rest 16687  df-topn 16688  df-topgen 16708  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-ntr 21623  df-cnp 21831  df-xms 22925  df-ms 22926  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvef  24581
  Copyright terms: Public domain W3C validator