MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveflem Structured version   Visualization version   GIF version

Theorem dveflem 24570
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 15456, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem 0(ℂ D exp)1

Proof of Theorem dveflem
Dummy variables 𝑘 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10627 . . 3 0 ∈ ℂ
2 eqid 2821 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
32cnfldtop 23386 . . . 4 (TopOpen‘ℂfld) ∈ Top
4 unicntop 23388 . . . . 5 ℂ = (TopOpen‘ℂfld)
54ntrtop 21672 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
63, 5ax-mp 5 . . 3 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
71, 6eleqtrri 2912 . 2 0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ)
8 ax-1cn 10589 . . 3 1 ∈ ℂ
9 1rp 12387 . . . . . 6 1 ∈ ℝ+
10 ifcl 4511 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+)
119, 10mpan2 689 . . . . 5 (𝑥 ∈ ℝ+ → if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+)
12 eldifsn 4713 . . . . . . 7 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
13 simprl 769 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 𝑤 ∈ ℂ)
1413subid1d 10980 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (𝑤 − 0) = 𝑤)
1514fveq2d 6669 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (abs‘(𝑤 − 0)) = (abs‘𝑤))
1615breq1d 5069 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) ↔ (abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1)))
1713abscld 14790 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (abs‘𝑤) ∈ ℝ)
18 rpre 12391 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1918adantr 483 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 𝑥 ∈ ℝ)
20 1red 10636 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → 1 ∈ ℝ)
21 ltmin 12581 . . . . . . . . . . 11 (((abs‘𝑤) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2217, 19, 20, 21syl3anc 1367 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘𝑤) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2316, 22bitrd 281 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
24 simplr 767 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
2524, 12sylibr 236 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ (ℂ ∖ {0}))
26 fveq2 6665 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (exp‘𝑧) = (exp‘𝑤))
2726oveq1d 7165 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((exp‘𝑧) − 1) = ((exp‘𝑤) − 1))
28 id 22 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤𝑧 = 𝑤)
2927, 28oveq12d 7168 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑤) − 1) / 𝑤))
30 eqid 2821 . . . . . . . . . . . . . 14 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))
31 ovex 7183 . . . . . . . . . . . . . 14 (((exp‘𝑤) − 1) / 𝑤) ∈ V
3229, 30, 31fvmpt 6763 . . . . . . . . . . . . 13 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3325, 32syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3433fvoveq1d 7172 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) = (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)))
35 simplrl 775 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ ℂ)
36 efcl 15430 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (exp‘𝑤) ∈ ℂ)
38 1cnd 10630 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 1 ∈ ℂ)
3937, 38subcld 10991 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((exp‘𝑤) − 1) ∈ ℂ)
40 simplrr 776 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ≠ 0)
4139, 35, 40divcld 11410 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
4241, 38subcld 10991 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
4342abscld 14790 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
4435abscld 14790 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) ∈ ℝ)
45 simpll 765 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ+)
4645rpred 12425 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ)
47 abscl 14632 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
4847ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ)
4936ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) ∈ ℂ)
50 subcl 10879 . . . . . . . . . . . . . . . . . . . . 21 (((exp‘𝑤) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘𝑤) − 1) ∈ ℂ)
5149, 8, 50sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − 1) ∈ ℂ)
52 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 𝑤 ∈ ℂ)
53 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 𝑤 ≠ 0)
5451, 52, 53divcld 11410 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
55 1cnd 10630 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℂ)
5654, 55subcld 10991 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
5756abscld 14790 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
5848, 57remulcld 10665 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ∈ ℝ)
5948resqcld 13605 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℝ)
60 3re 11711 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
61 4nn 11714 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
62 nndivre 11672 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℝ)
6360, 61, 62mp2an 690 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℝ
64 remulcl 10616 . . . . . . . . . . . . . . . . 17 ((((abs‘𝑤)↑2) ∈ ℝ ∧ (3 / 4) ∈ ℝ) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6559, 63, 64sylancl 588 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6651, 52subcld 10991 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) ∈ ℂ)
6766, 52, 53divcan2d 11412 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (((exp‘𝑤) − 1) − 𝑤))
6851, 52, 52, 53divsubdird 11449 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)))
6952, 53dividd 11408 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 𝑤) = 1)
7069oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7168, 70eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7271oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)))
7349, 55, 52subsub4d 11022 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = ((exp‘𝑤) − (1 + 𝑤)))
74 addcl 10613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (1 + 𝑤) ∈ ℂ)
758, 52, 74sylancr 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (1 + 𝑤) ∈ ℂ)
76 2nn0 11908 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℕ0
77 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))
7877eftlcl 15454 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℂ ∧ 2 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
7952, 76, 78sylancl 588 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
80 df-2 11694 . . . . . . . . . . . . . . . . . . . . . . . 24 2 = (1 + 1)
81 1nn0 11907 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
82 1e0p1 12134 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
83 0nn0 11906 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
84 0cnd 10628 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 ∈ ℂ)
8577efval2 15431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
8685ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
87 nn0uz 12274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (ℤ‘0)
8887sumeq1i 15049 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)
8986, 88syl6req 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = (exp‘𝑤))
9089oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = (0 + (exp‘𝑤)))
9149addid2d 10835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + (exp‘𝑤)) = (exp‘𝑤))
9290, 91eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
93 eft0val 15459 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℂ → ((𝑤↑0) / (!‘0)) = 1)
9493ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑0) / (!‘0)) = 1)
9594oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = (0 + 1))
9695, 82syl6eqr 2874 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = 1)
9777, 82, 83, 52, 84, 92, 96efsep 15457 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (1 + Σ𝑘 ∈ (ℤ‘1)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
98 exp1 13429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (𝑤↑1) = 𝑤)
9998ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤↑1) = 𝑤)
10099oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / (!‘1)))
101 fac1 13631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (!‘1) = 1
102101oveq2i 7161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 / (!‘1)) = (𝑤 / 1)
103100, 102syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / 1))
104 div1 11323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℂ → (𝑤 / 1) = 𝑤)
105104ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 1) = 𝑤)
106103, 105eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = 𝑤)
107106oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (1 + ((𝑤↑1) / (!‘1))) = (1 + 𝑤))
10877, 80, 81, 52, 55, 97, 107efsep 15457 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = ((1 + 𝑤) + Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
10975, 79, 108mvrladdd 11047 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − (1 + 𝑤)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11073, 109eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11167, 72, 1103eqtr3d 2864 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
112111fveq2d 6669 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
11352, 56absmuld 14808 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
114112, 113eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
115 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛)))
116 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛)))
117 2nn 11704 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
118117a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 2 ∈ ℕ)
119 1red 10636 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℝ)
120 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) < 1)
12148, 119, 120ltled 10782 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ≤ 1)
12277, 115, 116, 118, 52, 121eftlub 15456 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
123114, 122eqbrtrrd 5083 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
124 df-3 11695 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
125 fac2 13633 . . . . . . . . . . . . . . . . . . . . 21 (!‘2) = 2
126125oveq1i 7160 . . . . . . . . . . . . . . . . . . . 20 ((!‘2) · 2) = (2 · 2)
127 2t2e4 11795 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
128126, 127eqtr2i 2845 . . . . . . . . . . . . . . . . . . 19 4 = ((!‘2) · 2)
129124, 128oveq12i 7162 . . . . . . . . . . . . . . . . . 18 (3 / 4) = ((2 + 1) / ((!‘2) · 2))
130129oveq2i 7161 . . . . . . . . . . . . . . . . 17 (((abs‘𝑤)↑2) · (3 / 4)) = (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2)))
131123, 130breqtrrdi 5101 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · (3 / 4)))
13263a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ∈ ℝ)
13348sqge0d 13606 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 ≤ ((abs‘𝑤)↑2))
134 1re 10635 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
135 3lt4 11805 . . . . . . . . . . . . . . . . . . . . . 22 3 < 4
136 4cn 11716 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
137136mulid1i 10639 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 1) = 4
138135, 137breqtrri 5086 . . . . . . . . . . . . . . . . . . . . 21 3 < (4 · 1)
139 4re 11715 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
140 4pos 11738 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 4
141139, 140pm3.2i 473 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℝ ∧ 0 < 4)
142 ltdivmul 11509 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((3 / 4) < 1 ↔ 3 < (4 · 1)))
14360, 134, 141, 142mp3an 1457 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 4) < 1 ↔ 3 < (4 · 1))
144138, 143mpbir 233 . . . . . . . . . . . . . . . . . . . 20 (3 / 4) < 1
14563, 134, 144ltleii 10757 . . . . . . . . . . . . . . . . . . 19 (3 / 4) ≤ 1
146145a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ≤ 1)
147132, 119, 59, 133, 146lemul2ad 11574 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ (((abs‘𝑤)↑2) · 1))
14848recnd 10663 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℂ)
149148sqcld 13502 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℂ)
150149mulid1d 10652 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · 1) = ((abs‘𝑤)↑2))
151147, 150breqtrd 5085 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ ((abs‘𝑤)↑2))
15258, 65, 59, 131, 151letrd 10791 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤)↑2))
153148sqvald 13501 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) = ((abs‘𝑤) · (abs‘𝑤)))
154152, 153breqtrd 5085 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤)))
155 absgt0 14678 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (𝑤 ≠ 0 ↔ 0 < (abs‘𝑤)))
156155ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (𝑤 ≠ 0 ↔ 0 < (abs‘𝑤)))
15753, 156mpbid 234 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → 0 < (abs‘𝑤))
15848, 157elrpd 12422 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ+)
15957, 48, 158lemul2d 12469 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → ((abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤) ↔ ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤))))
160154, 159mpbird 259 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
161160ad2ant2l 744 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
162 simprl 769 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) < 𝑥)
16343, 44, 46, 161, 162lelttrd 10792 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) < 𝑥)
16434, 163eqbrtrd 5081 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
165164ex 415 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → (((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16623, 165sylbid 242 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
167166adantld 493 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)) → ((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16812, 167sylan2b 595 . . . . . 6 ((𝑥 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})) → ((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
169168ralrimiva 3182 . . . . 5 (𝑥 ∈ ℝ+ → ∀𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
170 brimralrspcev 5120 . . . . 5 ((if(𝑥 ≤ 1, 𝑥, 1) ∈ ℝ+ ∧ ∀𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < if(𝑥 ≤ 1, 𝑥, 1)) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
17111, 169, 170syl2anc 586 . . . 4 (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
172171rgen 3148 . . 3 𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
173 eldifi 4103 . . . . . . . . . 10 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
174 efcl 15430 . . . . . . . . . 10 (𝑧 ∈ ℂ → (exp‘𝑧) ∈ ℂ)
175173, 174syl 17 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → (exp‘𝑧) ∈ ℂ)
176 1cnd 10630 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) → 1 ∈ ℂ)
177175, 176subcld 10991 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → ((exp‘𝑧) − 1) ∈ ℂ)
178 eldifsni 4716 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
179177, 173, 178divcld 11410 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − 1) / 𝑧) ∈ ℂ)
18030, 179fmpti 6871 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)):(ℂ ∖ {0})⟶ℂ
181180a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
182 difssd 4109 . . . . 5 (⊤ → (ℂ ∖ {0}) ⊆ ℂ)
183 0cnd 10628 . . . . 5 (⊤ → 0 ∈ ℂ)
184181, 182, 183ellimc3 24471 . . . 4 (⊤ → (1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))))
185184mptru 1540 . . 3 (1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑤 ≠ 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)))
1868, 172, 185mpbir2an 709 . 2 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)
1872cnfldtopon 23385 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
188187toponrestid 21523 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
189173subid1d 10980 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → (𝑧 − 0) = 𝑧)
190189oveq2d 7166 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)) = (((exp‘𝑧) − (exp‘0)) / 𝑧))
191 ef0 15438 . . . . . . . 8 (exp‘0) = 1
192191oveq2i 7161 . . . . . . 7 ((exp‘𝑧) − (exp‘0)) = ((exp‘𝑧) − 1)
193192oveq1i 7160 . . . . . 6 (((exp‘𝑧) − (exp‘0)) / 𝑧) = (((exp‘𝑧) − 1) / 𝑧)
194190, 193syl6req 2873 . . . . 5 (𝑧 ∈ (ℂ ∖ {0}) → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
195194mpteq2ia 5150 . . . 4 (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
196 ssidd 3990 . . . 4 (⊤ → ℂ ⊆ ℂ)
197 eff 15429 . . . . 5 exp:ℂ⟶ℂ
198197a1i 11 . . . 4 (⊤ → exp:ℂ⟶ℂ)
199188, 2, 195, 196, 198, 196eldv 24490 . . 3 (⊤ → (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0))))
200199mptru 1540 . 2 (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)))
2017, 186, 200mpbir2an 709 1 0(ℂ D exp)1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wtru 1534  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3933  ifcif 4467  {csn 4561   class class class wbr 5059  cmpt 5139  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  3c3 11687  4c4 11688  0cn0 11891  cuz 12237  +crp 12383  cexp 13423  !cfa 13627  abscabs 14587  Σcsu 15036  expce 15409  TopOpenctopn 16689  fldccnfld 20539  Topctop 21495  intcnt 21619   lim climc 24454   D cdv 24455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-ntr 21622  df-cnp 21830  df-xms 22924  df-ms 22925  df-limc 24458  df-dv 24459
This theorem is referenced by:  dvef  24571
  Copyright terms: Public domain W3C validator