Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addlimc Structured version   Visualization version   GIF version

Theorem addlimc 45646
Description: Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
addlimc.f 𝐹 = (𝑥𝐴𝐵)
addlimc.g 𝐺 = (𝑥𝐴𝐶)
addlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
addlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
addlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
addlimc.e (𝜑𝐸 ∈ (𝐹 lim 𝐷))
addlimc.i (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
addlimc (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem addlimc
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25776 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 addlimc.e . . . 4 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
31, 2sselid 3944 . . 3 (𝜑𝐸 ∈ ℂ)
4 limccl 25776 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 addlimc.i . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
64, 5sselid 3944 . . 3 (𝜑𝐼 ∈ ℂ)
73, 6addcld 11193 . 2 (𝜑 → (𝐸 + 𝐼) ∈ ℂ)
8 addlimc.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
9 addlimc.f . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
108, 9fmptd 7086 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
119, 8, 2limcmptdm 45633 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
12 limcrcl 25775 . . . . . . . . . . 11 (𝐸 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
132, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1413simp3d 1144 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
1510, 11, 14ellimc3 25780 . . . . . . . 8 (𝜑 → (𝐸 ∈ (𝐹 lim 𝐷) ↔ (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))))
162, 15mpbid 232 . . . . . . 7 (𝜑 → (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧)))
1716simprd 495 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))
18 rphalfcl 12980 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
19 breq2 5111 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐹𝑣) − 𝐸)) < 𝑧 ↔ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2120rexralbidv 3203 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2221rspccva 3587 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2317, 18, 22syl2an 596 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
24 addlimc.c . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
25 addlimc.g . . . . . . . . . 10 𝐺 = (𝑥𝐴𝐶)
2624, 25fmptd 7086 . . . . . . . . 9 (𝜑𝐺:𝐴⟶ℂ)
2726, 11, 14ellimc3 25780 . . . . . . . 8 (𝜑 → (𝐼 ∈ (𝐺 lim 𝐷) ↔ (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))))
285, 27mpbid 232 . . . . . . 7 (𝜑 → (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧)))
2928simprd 495 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))
30 breq2 5111 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐺𝑣) − 𝐼)) < 𝑧 ↔ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3130imbi2d 340 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3231rexralbidv 3203 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3332rspccva 3587 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3429, 18, 33syl2an 596 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
35 reeanv 3209 . . . . 5 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) ↔ (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3623, 34, 35sylanbrc 583 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
37 ifcl 4534 . . . . . . . 8 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
38373ad2ant2 1134 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
39 nfv 1914 . . . . . . . . 9 𝑣(𝜑𝑦 ∈ ℝ+)
40 nfv 1914 . . . . . . . . 9 𝑣(𝑎 ∈ ℝ+𝑏 ∈ ℝ+)
41 nfra1 3261 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
42 nfra1 3261 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
4341, 42nfan 1899 . . . . . . . . 9 𝑣(∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
4439, 40, 43nf3an 1901 . . . . . . . 8 𝑣((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
45 simp11l 1285 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝜑)
46 simp2 1137 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐴)
4745, 46jca 511 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝜑𝑣𝐴))
48 rpre 12960 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
50493ad2ant1 1133 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑦 ∈ ℝ)
51503ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑦 ∈ ℝ)
52 simp13l 1289 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
53 simp3l 1202 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐷)
5411sselda 3946 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
5545, 46, 54syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣 ∈ ℂ)
5645, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝐷 ∈ ℂ)
5755, 56subcld 11533 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷) ∈ ℂ)
5857abscld 15405 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) ∈ ℝ)
5938rpred 12995 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
61 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
6261rpred 12995 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
63623ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑎 ∈ ℝ)
64633ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑎 ∈ ℝ)
65 simp3r 1203 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))
66 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
6766rpred 12995 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
68 min1 13149 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6962, 67, 68syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
70693ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
71703ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
7258, 60, 64, 65, 71ltletrd 11334 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑎)
7353, 72jca 511 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎))
74 rsp 3225 . . . . . . . . . . . 12 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
7552, 46, 73, 74syl3c 66 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
7647, 51, 75jca31 514 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
77 simp13r 1290 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
78673ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑏 ∈ ℝ)
79783ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑏 ∈ ℝ)
80 min2 13150 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8162, 67, 80syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
82813ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
83823ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8458, 60, 79, 65, 83ltletrd 11334 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑏)
8553, 84jca 511 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏))
86 rsp 3225 . . . . . . . . . . 11 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
8777, 46, 85, 86syl3c 66 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
888, 24addcld 11193 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
89 addlimc.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
9088, 89fmptd 7086 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝐴⟶ℂ)
9190ffvelcdmda 7056 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐻𝑣) ∈ ℂ)
9291ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) ∈ ℂ)
93 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝜑)
9493, 7syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐸 + 𝐼) ∈ ℂ)
9592, 94subcld 11533 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) ∈ ℂ)
9695abscld 15405 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ∈ ℝ)
9710ffvelcdmda 7056 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
9897ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐹𝑣) ∈ ℂ)
9993, 3syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐸 ∈ ℂ)
10098, 99subcld 11533 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐹𝑣) − 𝐸) ∈ ℂ)
101100abscld 15405 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) ∈ ℝ)
10226ffvelcdmda 7056 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐺𝑣) ∈ ℂ)
103102ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐺𝑣) ∈ ℂ)
10493, 6syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐼 ∈ ℂ)
105103, 104subcld 11533 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐺𝑣) − 𝐼) ∈ ℂ)
106105abscld 15405 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) ∈ ℝ)
107101, 106readdcld 11203 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) ∈ ℝ)
108 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝑦 ∈ ℝ)
109 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑣𝐴)
110 nfmpt1 5206 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴 ↦ (𝐵 + 𝐶))
11189, 110nfcxfr 2889 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
112 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑣
113111, 112nffv 6868 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑣)
114 nfmpt1 5206 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
1159, 114nfcxfr 2889 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
116115, 112nffv 6868 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐹𝑣)
117 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑥 +
118 nfmpt1 5206 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐶)
11925, 118nfcxfr 2889 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
120119, 112nffv 6868 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐺𝑣)
121116, 117, 120nfov 7417 . . . . . . . . . . . . . . . . . . 19 𝑥((𝐹𝑣) + (𝐺𝑣))
122113, 121nfeq 2905 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))
123109, 122nfim 1896 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
124 eleq1w 2811 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
125124anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
126 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝐻𝑥) = (𝐻𝑣))
127 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
128 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
129127, 128oveq12d 7405 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → ((𝐹𝑥) + (𝐺𝑥)) = ((𝐹𝑣) + (𝐺𝑣)))
130126, 129eqeq12d 2745 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)) ↔ (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))))
131125, 130imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥))) ↔ ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))))
132 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥𝐴)
13389fvmpt2 6979 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐻𝑥) = (𝐵 + 𝐶))
134132, 88, 133syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵 + 𝐶))
1359fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
136132, 8, 135syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
137136eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 = (𝐹𝑥))
13825fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐶 ∈ ℂ) → (𝐺𝑥) = 𝐶)
139132, 24, 138syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
140139eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐶 = (𝐺𝑥))
141137, 140oveq12d 7405 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) = ((𝐹𝑥) + (𝐺𝑥)))
142134, 141eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
143123, 131, 142chvarfv 2241 . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
144143ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
145144oveq1d 7402 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)))
14698, 103, 99, 104addsub4d 11580 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
147145, 146eqtrd 2764 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
148147fveq2d 6862 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) = (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))))
149100, 105abstrid 15425 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
150148, 149eqbrtrd 5129 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
151 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
152 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
153101, 106, 108, 151, 152lt2halvesd 12430 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) < 𝑦)
15496, 107, 108, 150, 153lelttrd 11332 . . . . . . . . . 10 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
15576, 87, 154syl2anc 584 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
1561553exp 1119 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
15744, 156ralrimi 3235 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
158 brimralrspcev 5168 . . . . . . 7 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
15938, 157, 158syl2anc 584 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
1601593exp 1119 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
161160rexlimdvv 3193 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
16236, 161mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
163162ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16490, 11, 14ellimc3 25780 . 2 (𝜑 → ((𝐸 + 𝐼) ∈ (𝐻 lim 𝐷) ↔ ((𝐸 + 𝐼) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
1657, 163, 164mpbir2and 713 1 (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  abscabs 15200   lim climc 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cnp 23115  df-xms 24208  df-ms 24209  df-limc 25767
This theorem is referenced by:  sublimc  45650  reclimc  45651  fourierdlem53  46157  fourierdlem60  46164  fourierdlem61  46165
  Copyright terms: Public domain W3C validator