Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addlimc Structured version   Visualization version   GIF version

Theorem addlimc 45653
Description: Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
addlimc.f 𝐹 = (𝑥𝐴𝐵)
addlimc.g 𝐺 = (𝑥𝐴𝐶)
addlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
addlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
addlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
addlimc.e (𝜑𝐸 ∈ (𝐹 lim 𝐷))
addlimc.i (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
addlimc (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem addlimc
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25783 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 addlimc.e . . . 4 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
31, 2sselid 3947 . . 3 (𝜑𝐸 ∈ ℂ)
4 limccl 25783 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 addlimc.i . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
64, 5sselid 3947 . . 3 (𝜑𝐼 ∈ ℂ)
73, 6addcld 11200 . 2 (𝜑 → (𝐸 + 𝐼) ∈ ℂ)
8 addlimc.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
9 addlimc.f . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
108, 9fmptd 7089 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
119, 8, 2limcmptdm 45640 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
12 limcrcl 25782 . . . . . . . . . . 11 (𝐸 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
132, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1413simp3d 1144 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
1510, 11, 14ellimc3 25787 . . . . . . . 8 (𝜑 → (𝐸 ∈ (𝐹 lim 𝐷) ↔ (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))))
162, 15mpbid 232 . . . . . . 7 (𝜑 → (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧)))
1716simprd 495 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))
18 rphalfcl 12987 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
19 breq2 5114 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐹𝑣) − 𝐸)) < 𝑧 ↔ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2120rexralbidv 3204 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2221rspccva 3590 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2317, 18, 22syl2an 596 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
24 addlimc.c . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
25 addlimc.g . . . . . . . . . 10 𝐺 = (𝑥𝐴𝐶)
2624, 25fmptd 7089 . . . . . . . . 9 (𝜑𝐺:𝐴⟶ℂ)
2726, 11, 14ellimc3 25787 . . . . . . . 8 (𝜑 → (𝐼 ∈ (𝐺 lim 𝐷) ↔ (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))))
285, 27mpbid 232 . . . . . . 7 (𝜑 → (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧)))
2928simprd 495 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))
30 breq2 5114 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐺𝑣) − 𝐼)) < 𝑧 ↔ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3130imbi2d 340 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3231rexralbidv 3204 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3332rspccva 3590 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3429, 18, 33syl2an 596 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
35 reeanv 3210 . . . . 5 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) ↔ (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3623, 34, 35sylanbrc 583 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
37 ifcl 4537 . . . . . . . 8 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
38373ad2ant2 1134 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
39 nfv 1914 . . . . . . . . 9 𝑣(𝜑𝑦 ∈ ℝ+)
40 nfv 1914 . . . . . . . . 9 𝑣(𝑎 ∈ ℝ+𝑏 ∈ ℝ+)
41 nfra1 3262 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
42 nfra1 3262 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
4341, 42nfan 1899 . . . . . . . . 9 𝑣(∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
4439, 40, 43nf3an 1901 . . . . . . . 8 𝑣((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
45 simp11l 1285 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝜑)
46 simp2 1137 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐴)
4745, 46jca 511 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝜑𝑣𝐴))
48 rpre 12967 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
50493ad2ant1 1133 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑦 ∈ ℝ)
51503ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑦 ∈ ℝ)
52 simp13l 1289 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
53 simp3l 1202 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐷)
5411sselda 3949 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
5545, 46, 54syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣 ∈ ℂ)
5645, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝐷 ∈ ℂ)
5755, 56subcld 11540 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷) ∈ ℂ)
5857abscld 15412 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) ∈ ℝ)
5938rpred 13002 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
61 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
6261rpred 13002 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
63623ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑎 ∈ ℝ)
64633ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑎 ∈ ℝ)
65 simp3r 1203 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))
66 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
6766rpred 13002 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
68 min1 13156 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6962, 67, 68syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
70693ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
71703ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
7258, 60, 64, 65, 71ltletrd 11341 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑎)
7353, 72jca 511 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎))
74 rsp 3226 . . . . . . . . . . . 12 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
7552, 46, 73, 74syl3c 66 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
7647, 51, 75jca31 514 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
77 simp13r 1290 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
78673ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑏 ∈ ℝ)
79783ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑏 ∈ ℝ)
80 min2 13157 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8162, 67, 80syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
82813ad2ant2 1134 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
83823ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8458, 60, 79, 65, 83ltletrd 11341 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑏)
8553, 84jca 511 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏))
86 rsp 3226 . . . . . . . . . . 11 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
8777, 46, 85, 86syl3c 66 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
888, 24addcld 11200 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
89 addlimc.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
9088, 89fmptd 7089 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝐴⟶ℂ)
9190ffvelcdmda 7059 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐻𝑣) ∈ ℂ)
9291ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) ∈ ℂ)
93 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝜑)
9493, 7syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐸 + 𝐼) ∈ ℂ)
9592, 94subcld 11540 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) ∈ ℂ)
9695abscld 15412 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ∈ ℝ)
9710ffvelcdmda 7059 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
9897ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐹𝑣) ∈ ℂ)
9993, 3syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐸 ∈ ℂ)
10098, 99subcld 11540 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐹𝑣) − 𝐸) ∈ ℂ)
101100abscld 15412 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) ∈ ℝ)
10226ffvelcdmda 7059 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐺𝑣) ∈ ℂ)
103102ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐺𝑣) ∈ ℂ)
10493, 6syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐼 ∈ ℂ)
105103, 104subcld 11540 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐺𝑣) − 𝐼) ∈ ℂ)
106105abscld 15412 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) ∈ ℝ)
107101, 106readdcld 11210 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) ∈ ℝ)
108 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝑦 ∈ ℝ)
109 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑣𝐴)
110 nfmpt1 5209 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴 ↦ (𝐵 + 𝐶))
11189, 110nfcxfr 2890 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
112 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑣
113111, 112nffv 6871 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑣)
114 nfmpt1 5209 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
1159, 114nfcxfr 2890 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
116115, 112nffv 6871 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐹𝑣)
117 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑥 +
118 nfmpt1 5209 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐶)
11925, 118nfcxfr 2890 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
120119, 112nffv 6871 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐺𝑣)
121116, 117, 120nfov 7420 . . . . . . . . . . . . . . . . . . 19 𝑥((𝐹𝑣) + (𝐺𝑣))
122113, 121nfeq 2906 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))
123109, 122nfim 1896 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
124 eleq1w 2812 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
125124anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
126 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝐻𝑥) = (𝐻𝑣))
127 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
128 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
129127, 128oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → ((𝐹𝑥) + (𝐺𝑥)) = ((𝐹𝑣) + (𝐺𝑣)))
130126, 129eqeq12d 2746 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)) ↔ (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))))
131125, 130imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥))) ↔ ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))))
132 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥𝐴)
13389fvmpt2 6982 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐻𝑥) = (𝐵 + 𝐶))
134132, 88, 133syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵 + 𝐶))
1359fvmpt2 6982 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
136132, 8, 135syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
137136eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 = (𝐹𝑥))
13825fvmpt2 6982 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐶 ∈ ℂ) → (𝐺𝑥) = 𝐶)
139132, 24, 138syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
140139eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐶 = (𝐺𝑥))
141137, 140oveq12d 7408 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) = ((𝐹𝑥) + (𝐺𝑥)))
142134, 141eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
143123, 131, 142chvarfv 2241 . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
144143ad3antrrr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
145144oveq1d 7405 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)))
14698, 103, 99, 104addsub4d 11587 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
147145, 146eqtrd 2765 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
148147fveq2d 6865 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) = (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))))
149100, 105abstrid 15432 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
150148, 149eqbrtrd 5132 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
151 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
152 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
153101, 106, 108, 151, 152lt2halvesd 12437 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) < 𝑦)
15496, 107, 108, 150, 153lelttrd 11339 . . . . . . . . . 10 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
15576, 87, 154syl2anc 584 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
1561553exp 1119 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
15744, 156ralrimi 3236 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
158 brimralrspcev 5171 . . . . . . 7 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
15938, 157, 158syl2anc 584 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
1601593exp 1119 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
161160rexlimdvv 3194 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
16236, 161mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
163162ralrimiva 3126 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16490, 11, 14ellimc3 25787 . 2 (𝜑 → ((𝐸 + 𝐼) ∈ (𝐻 lim 𝐷) ↔ ((𝐸 + 𝐼) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
1657, 163, 164mpbir2and 713 1 (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  +crp 12958  abscabs 15207   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  sublimc  45657  reclimc  45658  fourierdlem53  46164  fourierdlem60  46171  fourierdlem61  46172
  Copyright terms: Public domain W3C validator