Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc2lem Structured version   Visualization version   GIF version

Theorem ioodvbdlimc2lem 40664
 Description: Limit at the upper bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc2lem.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc2lem.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc2lem.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc2lem.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
ioodvbdlimc2lem.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc2lem.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc2lem.y 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
ioodvbdlimc2lem.m 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
ioodvbdlimc2lem.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗))))
ioodvbdlimc2lem.r 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐵 − (1 / 𝑗)))
ioodvbdlimc2lem.n 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
ioodvbdlimc2lem.ch (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
Assertion
Ref Expression
ioodvbdlimc2lem (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑧,𝑦   𝐵,𝑗,𝑥,𝑧,𝑦   𝑗,𝐹,𝑥,𝑧,𝑦   𝑗,𝑀,𝑥,𝑦   𝑗,𝑁,𝑧   𝑅,𝑗,𝑥,𝑦   𝑥,𝑆,𝑗,𝑦,𝑧   𝑥,𝑌   𝜑,𝑥,𝑗,𝑧,𝑦
Allowed substitution hints:   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑅(𝑧)   𝑀(𝑧)   𝑁(𝑥,𝑦)   𝑌(𝑦,𝑧,𝑗)

Proof of Theorem ioodvbdlimc2lem
Dummy variables 𝑏 𝑘 𝑖 𝑙 𝑤 𝑚 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 11912 . . . . . 6 (ℤ𝑀) ⊆ ℤ
2 zssre 11590 . . . . . 6 ℤ ⊆ ℝ
31, 2sstri 3761 . . . . 5 (ℤ𝑀) ⊆ ℝ
43a1i 11 . . . 4 (𝜑 → (ℤ𝑀) ⊆ ℝ)
5 ioodvbdlimc2lem.m . . . . . . 7 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
6 ioodvbdlimc2lem.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
7 ioodvbdlimc2lem.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
86, 7resubcld 10663 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
9 ioodvbdlimc2lem.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
107, 6posdifd 10819 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
119, 10mpbid 222 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1211gt0ne0d 10797 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
138, 12rereccld 11057 . . . . . . . . 9 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ)
14 0red 10246 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
158, 11recgt0d 11163 . . . . . . . . . 10 (𝜑 → 0 < (1 / (𝐵𝐴)))
1614, 13, 15ltled 10390 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / (𝐵𝐴)))
17 flge0nn0 12828 . . . . . . . . 9 (((1 / (𝐵𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐵𝐴))) → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
1813, 16, 17syl2anc 573 . . . . . . . 8 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
19 peano2nn0 11539 . . . . . . . 8 ((⌊‘(1 / (𝐵𝐴))) ∈ ℕ0 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
2018, 19syl 17 . . . . . . 7 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
215, 20syl5eqel 2854 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2221nn0zd 11686 . . . . 5 (𝜑𝑀 ∈ ℤ)
23 eqid 2771 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
2423uzsup 12869 . . . . 5 (𝑀 ∈ ℤ → sup((ℤ𝑀), ℝ*, < ) = +∞)
2522, 24syl 17 . . . 4 (𝜑 → sup((ℤ𝑀), ℝ*, < ) = +∞)
26 ioodvbdlimc2lem.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2726adantr 466 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
287rexrd 10294 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
2928adantr 466 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ*)
306rexrd 10294 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3130adantr 466 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ*)
326adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
33 eluzelre 11903 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
3433adantl 467 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ)
35 0red 10246 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
36 0red 10246 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 0 ∈ ℝ)
37 1red 10260 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℝ)
3836, 37readdcld 10274 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (0 + 1) ∈ ℝ)
3938adantl 467 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ∈ ℝ)
4036ltp1d 11159 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 0 < (0 + 1))
4140adantl 467 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < (0 + 1))
42 eluzel2 11897 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4342zred 11688 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4443adantl 467 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
4513flcld 12806 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℤ)
4645zred 11688 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℝ)
47 1red 10260 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4818nn0ge0d 11560 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (⌊‘(1 / (𝐵𝐴))))
4914, 46, 47, 48leadd1dd 10846 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ ((⌊‘(1 / (𝐵𝐴))) + 1))
5049, 5syl6breqr 4829 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ 𝑀)
5150adantr 466 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑀)
52 eluzle 11905 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5352adantl 467 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀𝑗)
5439, 44, 34, 51, 53letrd 10399 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑗)
5535, 39, 34, 41, 54ltletrd 10402 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < 𝑗)
5655gt0ne0d 10797 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ≠ 0)
5734, 56rereccld 11057 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ)
5832, 57resubcld 10663 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) ∈ ℝ)
597adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
6021nn0red 11558 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
6114, 47readdcld 10274 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
6246, 47readdcld 10274 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ)
6314ltp1d 11159 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
6414, 61, 62, 63, 49ltletrd 10402 . . . . . . . . . . . . 13 (𝜑 → 0 < ((⌊‘(1 / (𝐵𝐴))) + 1))
6564, 5syl6breqr 4829 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
6665gt0ne0d 10797 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6760, 66rereccld 11057 . . . . . . . . . 10 (𝜑 → (1 / 𝑀) ∈ ℝ)
6867adantr 466 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑀) ∈ ℝ)
6932, 68resubcld 10663 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑀)) ∈ ℝ)
705eqcomi 2780 . . . . . . . . . . . . 13 ((⌊‘(1 / (𝐵𝐴))) + 1) = 𝑀
7170oveq2i 6806 . . . . . . . . . . . 12 (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) = (1 / 𝑀)
7271, 67syl5eqel 2854 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) ∈ ℝ)
7313, 15elrpd 12071 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ+)
7462, 64elrpd 12071 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ+)
75 1rp 12038 . . . . . . . . . . . . . 14 1 ∈ ℝ+
7675a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
77 fllelt 12805 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) ∈ ℝ → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
7813, 77syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
7978simprd 483 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1))
8073, 74, 76, 79ltdiv2dd 40022 . . . . . . . . . . . 12 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (1 / (1 / (𝐵𝐴))))
818recnd 10273 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℂ)
8281, 12recrecd 11003 . . . . . . . . . . . 12 (𝜑 → (1 / (1 / (𝐵𝐴))) = (𝐵𝐴))
8380, 82breqtrd 4813 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (𝐵𝐴))
8472, 8, 6, 83ltsub2dd 10845 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐵𝐴)) < (𝐵 − (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))))
856recnd 10273 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
867recnd 10273 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8785, 86nncand 10602 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
8871oveq2i 6806 . . . . . . . . . . 11 (𝐵 − (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) = (𝐵 − (1 / 𝑀))
8988a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 − (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) = (𝐵 − (1 / 𝑀)))
9084, 87, 893brtr3d 4818 . . . . . . . . 9 (𝜑𝐴 < (𝐵 − (1 / 𝑀)))
9190adantr 466 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐵 − (1 / 𝑀)))
9260, 65elrpd 12071 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
9392adantr 466 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ+)
9434, 55elrpd 12071 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ+)
95 1red 10260 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
96 0le1 10756 . . . . . . . . . . 11 0 ≤ 1
9796a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ≤ 1)
9893, 94, 95, 97, 53lediv2ad 12096 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ≤ (1 / 𝑀))
9957, 68, 32, 98lesub2dd 10849 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑀)) ≤ (𝐵 − (1 / 𝑗)))
10059, 69, 58, 91, 99ltletrd 10402 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐵 − (1 / 𝑗)))
10194rpreccld 12084 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ+)
10232, 101ltsubrpd 12106 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) < 𝐵)
10329, 31, 58, 100, 102eliood 40238 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵))
10427, 103ffvelrnd 6505 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐵 − (1 / 𝑗))) ∈ ℝ)
105 ioodvbdlimc2lem.s . . . . 5 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗))))
106104, 105fmptd 6529 . . . 4 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
107 ioodvbdlimc2lem.dmdv . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
108 ioodvbdlimc2lem.dvbd . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
1097, 6, 9, 26, 107, 108dvbdfbdioo 40660 . . . . 5 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
11060adantr 466 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → 𝑀 ∈ ℝ)
111 simpr 471 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
112105fvmpt2 6435 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐹‘(𝐵 − (1 / 𝑗))) ∈ ℝ) → (𝑆𝑗) = (𝐹‘(𝐵 − (1 / 𝑗))))
113111, 104, 112syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑆𝑗) = (𝐹‘(𝐵 − (1 / 𝑗))))
114113fveq2d 6337 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))))
115114adantlr 694 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))))
116 simplr 752 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
117103adantlr 694 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵))
118 fveq2 6333 . . . . . . . . . . . . . . 15 (𝑥 = (𝐵 − (1 / 𝑗)) → (𝐹𝑥) = (𝐹‘(𝐵 − (1 / 𝑗))))
119118fveq2d 6337 . . . . . . . . . . . . . 14 (𝑥 = (𝐵 − (1 / 𝑗)) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))))
120119breq1d 4797 . . . . . . . . . . . . 13 (𝑥 = (𝐵 − (1 / 𝑗)) → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏))
121120rspccva 3459 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ∧ (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏)
122116, 117, 121syl2anc 573 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏)
123115, 122eqbrtrd 4809 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) ≤ 𝑏)
124123a1d 25 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
125124ralrimiva 3115 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
126 breq1 4790 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘𝑗𝑀𝑗))
127126imbi1d 330 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
128127ralbidv 3135 . . . . . . . . 9 (𝑘 = 𝑀 → (∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
129128rspcev 3460 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
130110, 125, 129syl2anc 573 . . . . . . 7 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
131130ex 397 . . . . . 6 (𝜑 → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
132131reximdv 3164 . . . . 5 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
133109, 132mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
1344, 25, 106, 133limsupre 40388 . . 3 (𝜑 → (lim sup‘𝑆) ∈ ℝ)
135134recnd 10273 . 2 (𝜑 → (lim sup‘𝑆) ∈ ℂ)
136 eluzelre 11903 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
137136adantl 467 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
138 0red 10246 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
13945peano2zd 11691 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℤ)
1405, 139syl5eqel 2854 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
141140adantr 466 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
142141zred 11688 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℝ)
143142adantr 466 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀 ∈ ℝ)
14465ad2antrr 705 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑀)
145 ioodvbdlimc2lem.n . . . . . . . . . . . . . 14 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
146 ioodvbdlimc2lem.y . . . . . . . . . . . . . . . . . . . 20 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
147 ioomidp 40256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
1487, 6, 9, 147syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
149 ne0i 4069 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
150148, 149syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
151 ioossre 12439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ ℝ
152151a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
153 dvfre 23933 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
15426, 152, 153syl2anc 573 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
155107feq2d 6170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
156154, 155mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
157156ffvelrnda 6504 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
158157recnd 10273 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
159158abscld 14382 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
160 eqid 2771 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
161 eqid 2771 . . . . . . . . . . . . . . . . . . . . . 22 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
162150, 159, 108, 160, 161suprnmpt 39874 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
163162simpld 482 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
164146, 163syl5eqel 2854 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ∈ ℝ)
165164adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑌 ∈ ℝ)
166 rpre 12041 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
167166rehalfcld 11485 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
168167adantl 467 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
169166recnd 10273 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
170169adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
171 2cnd 11298 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
172 rpne0 12050 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ≠ 0)
173172adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
174 2ne0 11318 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
175174a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
176170, 171, 173, 175divne0d 11022 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ≠ 0)
177165, 168, 176redivcld 11058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
178177flcld 12806 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
179178peano2zd 11691 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
180179, 141ifcld 4271 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
181145, 180syl5eqel 2854 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
182181zred 11688 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℝ)
183182adantr 466 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
184179zred 11688 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
185 max1 12220 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
186142, 184, 185syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
187186, 145syl6breqr 4829 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑁)
188187adantr 466 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑁)
189 eluzle 11905 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑁) → 𝑁𝑗)
190189adantl 467 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁𝑗)
191143, 183, 137, 188, 190letrd 10399 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑗)
192138, 143, 137, 144, 191ltletrd 10402 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑗)
193192gt0ne0d 10797 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
194137, 193rereccld 11057 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ)
195137, 192recgt0d 11163 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < (1 / 𝑗))
196194, 195elrpd 12071 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ+)
197196adantr 466 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → (1 / 𝑗) ∈ ℝ+)
198 ioodvbdlimc2lem.ch . . . . . . . . 9 (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
199198biimpi 206 . . . . . . . . . . . . . . . . 17 (𝜒 → (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
200 simp-5l 772 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → 𝜑)
201199, 200syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
202201, 26syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:(𝐴(,)𝐵)⟶ℝ)
203199simplrd 753 . . . . . . . . . . . . . . 15 (𝜒𝑧 ∈ (𝐴(,)𝐵))
204202, 203ffvelrnd 6505 . . . . . . . . . . . . . 14 (𝜒 → (𝐹𝑧) ∈ ℝ)
205204recnd 10273 . . . . . . . . . . . . 13 (𝜒 → (𝐹𝑧) ∈ ℂ)
206201, 106syl 17 . . . . . . . . . . . . . . 15 (𝜒𝑆:(ℤ𝑀)⟶ℝ)
207 simp-5r 774 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → 𝑥 ∈ ℝ+)
208199, 207syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑥 ∈ ℝ+)
209 eluz2 11898 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
210141, 181, 187, 209syl3anbrc 1428 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑀))
211201, 208, 210syl2anc 573 . . . . . . . . . . . . . . . . 17 (𝜒𝑁 ∈ (ℤ𝑀))
212 uzss 11913 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
213211, 212syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → (ℤ𝑁) ⊆ (ℤ𝑀))
214 simp-4r 770 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → 𝑗 ∈ (ℤ𝑁))
215199, 214syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑗 ∈ (ℤ𝑁))
216213, 215sseldd 3753 . . . . . . . . . . . . . . 15 (𝜒𝑗 ∈ (ℤ𝑀))
217206, 216ffvelrnd 6505 . . . . . . . . . . . . . 14 (𝜒 → (𝑆𝑗) ∈ ℝ)
218217recnd 10273 . . . . . . . . . . . . 13 (𝜒 → (𝑆𝑗) ∈ ℂ)
219201, 135syl 17 . . . . . . . . . . . . 13 (𝜒 → (lim sup‘𝑆) ∈ ℂ)
220205, 218, 219npncand 10621 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) = ((𝐹𝑧) − (lim sup‘𝑆)))
221220eqcomd 2777 . . . . . . . . . . 11 (𝜒 → ((𝐹𝑧) − (lim sup‘𝑆)) = (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))))
222221fveq2d 6337 . . . . . . . . . 10 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) = (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))))
223204, 217resubcld 10663 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℝ)
224201, 134syl 17 . . . . . . . . . . . . . . 15 (𝜒 → (lim sup‘𝑆) ∈ ℝ)
225217, 224resubcld 10663 . . . . . . . . . . . . . 14 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℝ)
226223, 225readdcld 10274 . . . . . . . . . . . . 13 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
227226recnd 10273 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℂ)
228227abscld 14382 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
229223recnd 10273 . . . . . . . . . . . . 13 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℂ)
230229abscld 14382 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ∈ ℝ)
231225recnd 10273 . . . . . . . . . . . . 13 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℂ)
232231abscld 14382 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
233230, 232readdcld 10274 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
234208rpred 12074 . . . . . . . . . . 11 (𝜒𝑥 ∈ ℝ)
235229, 231abstrid 14402 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ≤ ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))))
236234rehalfcld 11485 . . . . . . . . . . . . 13 (𝜒 → (𝑥 / 2) ∈ ℝ)
237201, 216, 113syl2anc 573 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑆𝑗) = (𝐹‘(𝐵 − (1 / 𝑗))))
238237oveq2d 6811 . . . . . . . . . . . . . . 15 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) = ((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗)))))
239238fveq2d 6337 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) = (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))))
240239, 230eqeltrrd 2851 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ∈ ℝ)
241201, 164syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
242151, 203sseldi 3750 . . . . . . . . . . . . . . . . 17 (𝜒𝑧 ∈ ℝ)
243201, 216, 58syl2anc 573 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝐵 − (1 / 𝑗)) ∈ ℝ)
244242, 243resubcld 10663 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) ∈ ℝ)
245241, 244remulcld 10275 . . . . . . . . . . . . . . 15 (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ∈ ℝ)
246201, 7syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝐴 ∈ ℝ)
247201, 6syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝐵 ∈ ℝ)
248201, 107syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
249162simprd 483 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
250146breq2i 4795 . . . . . . . . . . . . . . . . . . . . 21 ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
251250ralbii 3129 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
252249, 251sylibr 224 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
253201, 252syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
254 fveq2 6333 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → ((ℝ D 𝐹)‘𝑤) = ((ℝ D 𝐹)‘𝑥))
255254fveq2d 6337 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑤)) = (abs‘((ℝ D 𝐹)‘𝑥)))
256255breq1d 4797 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌))
257256cbvralv 3320 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
258253, 257sylibr 224 . . . . . . . . . . . . . . . . 17 (𝜒 → ∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌)
259201, 216, 103syl2anc 573 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵))
260243rexrd 10294 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐵 − (1 / 𝑗)) ∈ ℝ*)
261201, 30syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐵 ∈ ℝ*)
2623, 216sseldi 3750 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑗 ∈ ℝ)
263201, 216, 56syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑗 ≠ 0)
264262, 263rereccld 11057 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (1 / 𝑗) ∈ ℝ)
265247, 242resubcld 10663 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝐵𝑧) ∈ ℝ)
266242, 247resubcld 10663 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧𝐵) ∈ ℝ)
267266recnd 10273 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐵) ∈ ℂ)
268267abscld 14382 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (abs‘(𝑧𝐵)) ∈ ℝ)
269265leabsd 14360 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝐵𝑧) ≤ (abs‘(𝐵𝑧)))
270201, 85syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝐵 ∈ ℂ)
271242recnd 10273 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑧 ∈ ℂ)
272270, 271abssubd 14399 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝐵𝑧)) = (abs‘(𝑧𝐵)))
273269, 272breqtrd 4813 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝐵𝑧) ≤ (abs‘(𝑧𝐵)))
274199simprd 483 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (abs‘(𝑧𝐵)) < (1 / 𝑗))
275265, 268, 264, 273, 274lelttrd 10400 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐵𝑧) < (1 / 𝑗))
276247, 242, 264, 275ltsub23d 10837 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐵 − (1 / 𝑗)) < 𝑧)
277201, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐴 ∈ ℝ*)
278 iooltub 40252 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
279277, 261, 203, 278syl3anc 1476 . . . . . . . . . . . . . . . . . 18 (𝜒𝑧 < 𝐵)
280260, 261, 242, 276, 279eliood 40238 . . . . . . . . . . . . . . . . 17 (𝜒𝑧 ∈ ((𝐵 − (1 / 𝑗))(,)𝐵))
281246, 247, 202, 248, 241, 258, 259, 280dvbdfbdioolem1 40658 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ∧ (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝐵𝐴))))
282281simpld 482 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))))
283201, 216, 57syl2anc 573 . . . . . . . . . . . . . . . . 17 (𝜒 → (1 / 𝑗) ∈ ℝ)
284241, 283remulcld 10275 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · (1 / 𝑗)) ∈ ℝ)
285156, 148ffvelrnd 6505 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
286285recnd 10273 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
287286abscld 14382 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
288286absge0d 14390 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
289 fveq2 6333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))
290289fveq2d 6337 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
291146eqcomi 2780 . . . . . . . . . . . . . . . . . . . . . . 23 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌
292291a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌)
293290, 292breq12d 4800 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌))
294293rspcva 3458 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
295148, 249, 294syl2anc 573 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
29614, 287, 164, 288, 295letrd 10399 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
297201, 296syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → 0 ≤ 𝑌)
298283recnd 10273 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (1 / 𝑗) ∈ ℂ)
299 sub31 40018 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (1 / 𝑗) ∈ ℂ) → (𝑧 − (𝐵 − (1 / 𝑗))) = ((1 / 𝑗) − (𝐵𝑧)))
300271, 270, 298, 299syl3anc 1476 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) = ((1 / 𝑗) − (𝐵𝑧)))
301242, 247posdifd 10819 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧 < 𝐵 ↔ 0 < (𝐵𝑧)))
302279, 301mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → 0 < (𝐵𝑧))
303265, 302elrpd 12071 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝐵𝑧) ∈ ℝ+)
304283, 303ltsubrpd 12106 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((1 / 𝑗) − (𝐵𝑧)) < (1 / 𝑗))
305300, 304eqbrtrd 4809 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) < (1 / 𝑗))
306244, 283, 305ltled 10390 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) ≤ (1 / 𝑗))
307244, 283, 241, 297, 306lemul2ad 11169 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ≤ (𝑌 · (1 / 𝑗)))
308284adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
309236adantr 466 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑥 / 2) ∈ ℝ)
310 oveq1 6802 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 0 → (𝑌 · (1 / 𝑗)) = (0 · (1 / 𝑗)))
311298mul02d 10439 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (0 · (1 / 𝑗)) = 0)
312310, 311sylan9eqr 2827 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) = 0)
313208rphalfcld 12086 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑥 / 2) ∈ ℝ+)
314313rpgt0d 12077 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 < (𝑥 / 2))
315314adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → 0 < (𝑥 / 2))
316312, 315eqbrtrd 4809 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) < (𝑥 / 2))
317308, 309, 316ltled 10390 . . . . . . . . . . . . . . . . 17 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
318241adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ∈ ℝ)
319297adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 ≤ 𝑌)
320 neqne 2951 . . . . . . . . . . . . . . . . . . . 20 𝑌 = 0 → 𝑌 ≠ 0)
321320adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
322318, 319, 321ne0gt0d 10379 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 < 𝑌)
323284adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
3243, 211sseldi 3750 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁 ∈ ℝ)
325 0red 10246 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 ∈ ℝ)
326201, 208, 142syl2anc 573 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑀 ∈ ℝ)
327201, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 < 𝑀)
328201, 208, 187syl2anc 573 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑀𝑁)
329325, 326, 324, 327, 328ltletrd 10402 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 0 < 𝑁)
330329gt0ne0d 10797 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁 ≠ 0)
331324, 330rereccld 11057 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑁) ∈ ℝ)
332241, 331remulcld 10275 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑌 · (1 / 𝑁)) ∈ ℝ)
333332adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ∈ ℝ)
334236adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℝ)
335283adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ∈ ℝ)
336331adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ∈ ℝ)
337241adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℝ)
338297adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 𝑌)
339324, 329elrpd 12071 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁 ∈ ℝ+)
340201, 216, 94syl2anc 573 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ∈ ℝ+)
341 1red 10260 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → 1 ∈ ℝ)
34296a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → 0 ≤ 1)
343215, 189syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁𝑗)
344339, 340, 341, 342, 343lediv2ad 12096 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ≤ (1 / 𝑁))
345344adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ≤ (1 / 𝑁))
346335, 336, 337, 338, 345lemul2ad 11169 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑌 · (1 / 𝑁)))
347234recnd 10273 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑥 ∈ ℂ)
348 2cnd 11298 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → 2 ∈ ℂ)
349208rpne0d 12079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑥 ≠ 0)
350174a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → 2 ≠ 0)
351347, 348, 349, 350divne0d 11022 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑥 / 2) ≠ 0)
352241, 236, 351redivcld 11058 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) ∈ ℝ)
353352adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
354 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < 𝑌)
355314adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑥 / 2))
356337, 334, 354, 355divgt0d 11164 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑌 / (𝑥 / 2)))
357353, 356elrpd 12071 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ+)
358357rprecred 12085 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / (𝑌 / (𝑥 / 2))) ∈ ℝ)
359339adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 𝑁 ∈ ℝ+)
360 1red 10260 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 1 ∈ ℝ)
36196a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 1)
362352flcld 12806 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
363362peano2zd 11691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
364363zred 11688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
365201, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒𝑀 ∈ ℤ)
366363, 365ifcld 4271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
367145, 366syl5eqel 2854 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑁 ∈ ℤ)
368367zred 11688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑁 ∈ ℝ)
369 flltp1 12808 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑌 / (𝑥 / 2)) ∈ ℝ → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
370352, 369syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
371201, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑀 ∈ ℝ)
372 max2 12222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
373371, 364, 372syl2anc 573 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
374373, 145syl6breqr 4829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ 𝑁)
375352, 364, 368, 370, 374ltletrd 10402 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) < 𝑁)
376352, 324, 375ltled 10390 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
377376adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
378357, 359, 360, 361, 377lediv2ad 12096 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ≤ (1 / (𝑌 / (𝑥 / 2))))
379336, 358, 337, 338, 378lemul2ad 11169 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
380337recnd 10273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℂ)
381353recnd 10273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℂ)
382356gt0ne0d 10797 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≠ 0)
383380, 381, 382divrecd 11009 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
384334recnd 10273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℂ)
385354gt0ne0d 10797 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ≠ 0)
386351adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ≠ 0)
387380, 384, 385, 386ddcand 11026 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑥 / 2))
388383, 387eqtr3d 2807 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / (𝑌 / (𝑥 / 2)))) = (𝑥 / 2))
389379, 388breqtrd 4813 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑥 / 2))
390323, 333, 334, 346, 389letrd 10399 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
391322, 390syldan 579 . . . . . . . . . . . . . . . . 17 ((𝜒 ∧ ¬ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
392317, 391pm2.61dan 814 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
393245, 284, 236, 307, 392letrd 10399 . . . . . . . . . . . . . . 15 (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ≤ (𝑥 / 2))
394240, 245, 236, 282, 393letrd 10399 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑥 / 2))
395239, 394eqbrtrd 4809 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ≤ (𝑥 / 2))
396 simpllr 760 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
397199, 396syl 17 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
398230, 232, 236, 236, 395, 397leltaddd 10854 . . . . . . . . . . . 12 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < ((𝑥 / 2) + (𝑥 / 2)))
3993472halvesd 11484 . . . . . . . . . . . 12 (𝜒 → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
400398, 399breqtrd 4813 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
401228, 233, 234, 235, 400lelttrd 10400 . . . . . . . . . 10 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
402222, 401eqbrtrd 4809 . . . . . . . . 9 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
403198, 402sylbir 225 . . . . . . . 8 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
404403adantrl 695 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗))) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
405404ex 397 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
406405ralrimiva 3115 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
407 breq2 4791 . . . . . . . . 9 (𝑦 = (1 / 𝑗) → ((abs‘(𝑧𝐵)) < 𝑦 ↔ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
408407anbi2d 614 . . . . . . . 8 (𝑦 = (1 / 𝑗) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) ↔ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗))))
409408imbi1d 330 . . . . . . 7 (𝑦 = (1 / 𝑗) → (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥) ↔ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)))
410409ralbidv 3135 . . . . . 6 (𝑦 = (1 / 𝑗) → (∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥) ↔ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)))
411410rspcev 3460 . . . . 5 (((1 / 𝑗) ∈ ℝ+ ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
412197, 406, 411syl2anc 573 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
413 simpr 471 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑏𝑁)
414413iftrued 4234 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑁)
415 uzid 11907 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
416181, 415syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑁))
417416adantr 466 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑁 ∈ (ℤ𝑁))
418414, 417eqeltrd 2850 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
419418adantlr 694 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
420 iffalse 4235 . . . . . . . . . 10 𝑏𝑁 → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
421420adantl 467 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
422181ad2antrr 705 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℤ)
423 simplr 752 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℤ)
424422zred 11688 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℝ)
425423zred 11688 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℝ)
426 simpr 471 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → ¬ 𝑏𝑁)
427424, 425ltnled 10389 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → (𝑁 < 𝑏 ↔ ¬ 𝑏𝑁))
428426, 427mpbird 247 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 < 𝑏)
429424, 425, 428ltled 10390 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁𝑏)
430 eluz2 11898 . . . . . . . . . 10 (𝑏 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁𝑏))
431422, 423, 429, 430syl3anbrc 1428 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ (ℤ𝑁))
432421, 431eqeltrd 2850 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
433419, 432pm2.61dan 814 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
434433adantr 466 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
435 simpr 471 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
436 simpr 471 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
437181adantr 466 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
438437, 436ifcld 4271 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ)
439436zred 11688 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
440437zred 11688 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℝ)
441 max1 12220 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
442439, 440, 441syl2anc 573 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
443 eluz2 11898 . . . . . . . . . 10 (if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ ∧ 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏)))
444436, 438, 442, 443syl3anbrc 1428 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
445444adantr 466 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
446 fveq2 6333 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑐) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
447446eleq1d 2835 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((𝑆𝑐) ∈ ℂ ↔ (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ))
448446fvoveq1d 6817 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑐) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
449448breq1d 4797 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
450447, 449anbi12d 616 . . . . . . . . 9 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ↔ ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))))
451450rspccva 3459 . . . . . . . 8 ((∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏)) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
452435, 445, 451syl2anc 573 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
453452simprd 483 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))
454 fveq2 6333 . . . . . . . . 9 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑗) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
455454fvoveq1d 6817 . . . . . . . 8 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
456455breq1d 4797 . . . . . . 7 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
457456rspcev 3460 . . . . . 6 ((if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁) ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
458434, 453, 457syl2anc 573 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
459 ax-resscn 10198 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
460459a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
46126, 460fssd 6198 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
462 dvcn 23903 . . . . . . . . . . . . . 14 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
463460, 461, 152, 107, 462syl31anc 1479 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
464 cncffvrn 22920 . . . . . . . . . . . . 13 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
465460, 463, 464syl2anc 573 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
46626, 465mpbird 247 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
467 ioodvbdlimc2lem.r . . . . . . . . . . . 12 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐵 − (1 / 𝑗)))
468103, 467fmptd 6529 . . . . . . . . . . 11 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
469 eqid 2771 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
470 climrel 14430 . . . . . . . . . . . . 13 Rel ⇝
471470a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ⇝ )
472 fvex 6344 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ∈ V
473472mptex 6632 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) ∈ V
474473a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) ∈ V)
475 eqidd 2772 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐵))
476 eqidd 2772 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑚) → 𝐵 = 𝐵)
477 simpr 471 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
4786adantr 466 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
479475, 476, 477, 478fvmptd 6432 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑚) = 𝐵)
48023, 22, 474, 85, 479climconst 14481 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) ⇝ 𝐵)
481472mptex 6632 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ (𝐵 − (1 / 𝑗))) ∈ V
482467, 481eqeltri 2846 . . . . . . . . . . . . . . 15 𝑅 ∈ V
483482a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ V)
484 1cnd 10261 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
485 elnnnn0b 11543 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0 ∧ 0 < 𝑀))
48621, 65, 485sylanbrc 572 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
487 divcnvg 40374 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
488484, 486, 487syl2anc 573 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
489 eqidd 2772 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐵))
490 eqidd 2772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → 𝐵 = 𝐵)
491 simpr 471 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
4926adantr 466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
493489, 490, 491, 492fvmptd 6432 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) = 𝐵)
494493, 492eqeltrd 2850 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) ∈ ℝ)
495494recnd 10273 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) ∈ ℂ)
496 eqidd 2772 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) = (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)))
497 oveq2 6803 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (1 / 𝑗) = (1 / 𝑖))
498497adantl 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → (1 / 𝑗) = (1 / 𝑖))
4993, 491sseldi 3750 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
500 0red 10246 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
50160adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
50265adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑀)
503 eluzle 11905 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
504503adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
505500, 501, 499, 502, 504ltletrd 10402 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑖)
506505gt0ne0d 10797 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≠ 0)
507499, 506rereccld 11057 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℝ)
508496, 498, 491, 507fvmptd 6432 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) = (1 / 𝑖))
509499recnd 10273 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℂ)
510509, 506reccld 10999 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℂ)
511508, 510eqeltrd 2850 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) ∈ ℂ)
512497oveq2d 6811 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (𝐵 − (1 / 𝑗)) = (𝐵 − (1 / 𝑖)))
513 ovex 6826 . . . . . . . . . . . . . . . . 17 (𝐵 − (1 / 𝑖)) ∈ V
514512, 467, 513fvmpt 6426 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑀) → (𝑅𝑖) = (𝐵 − (1 / 𝑖)))
515514adantl 467 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (𝐵 − (1 / 𝑖)))
516493, 508oveq12d 6813 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) − ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)) = (𝐵 − (1 / 𝑖)))
517515, 516eqtr4d 2808 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) − ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)))
51823, 22, 480, 483, 488, 495, 511, 517climsub 14571 . . . . . . . . . . . . 13 (𝜑𝑅 ⇝ (𝐵 − 0))
51985subid1d 10586 . . . . . . . . . . . . 13 (𝜑 → (𝐵 − 0) = 𝐵)
520518, 519breqtrd 4813 . . . . . . . . . . . 12 (𝜑𝑅𝐵)
521 releldm 5495 . . . . . . . . . . . 12 ((Rel ⇝ ∧ 𝑅𝐵) → 𝑅 ∈ dom ⇝ )
522471, 520, 521syl2anc 573 . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
523 fveq2 6333 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
524 fveq2 6333 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → (𝑅𝑙) = (𝑅𝑘))
525524oveq2d 6811 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑘 → ((𝑅) − (𝑅𝑙)) = ((𝑅) − (𝑅𝑘)))
526525fveq2d 6337 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (abs‘((𝑅) − (𝑅𝑙))) = (abs‘((𝑅) − (𝑅𝑘))))
527526breq1d 4797 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → ((abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
528523, 527raleqbidv 3301 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
529528cbvrabv 3349 . . . . . . . . . . . . 13 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
530 fveq2 6333 . . . . . . . . . . . . . . . . . 18 ( = 𝑖 → (𝑅) = (𝑅𝑖))
531530fvoveq1d 6817 . . . . . . . . . . . . . . . . 17 ( = 𝑖 → (abs‘((𝑅) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝑘))))
532531breq1d 4797 . . . . . . . . . . . . . . . 16 ( = 𝑖 → ((abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
533532cbvralv 3320 . . . . . . . . . . . . . . 15 (∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
534533rgenw 3073 . . . . . . . . . . . . . 14 𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
535 rabbi 3269 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) ↔ {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
536534, 535mpbi 220 . . . . . . . . . . . . 13 {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
537529, 536eqtri 2793 . . . . . . . . . . . 12 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
538537infeq1i 8543 . . . . . . . . . . 11 inf({𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
5397, 6, 9, 466, 107, 108, 22, 468, 469, 522, 538ioodvbdlimc1lem1 40661 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) ⇝ (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
540467fvmpt2 6435 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐵 − (1 / 𝑗)) ∈ ℝ) → (𝑅𝑗) = (𝐵 − (1 / 𝑗)))
541111, 58, 540syl2anc 573 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) = (𝐵 − (1 / 𝑗)))
542541eqcomd 2777 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) = (𝑅𝑗))
543542fveq2d 6337 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐵 − (1 / 𝑗))) = (𝐹‘(𝑅𝑗)))
544543mpteq2dva 4879 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
545105, 544syl5eq 2817 . . . . . . . . . 10 (𝜑𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
546545fveq2d 6337 . . . . . . . . . 10 (𝜑 → (lim sup‘𝑆) = (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
547539, 545, 5463brtr4d 4819 . . . . . . . . 9 (𝜑𝑆 ⇝ (lim sup‘𝑆))
548472mptex 6632 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) ∈ V
549105, 548eqeltri 2846 . . . . . . . . . . 11 𝑆 ∈ V
550549a1i 11 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
551 eqidd 2772 . . . . . . . . . 10 ((𝜑𝑐 ∈ ℤ) → (𝑆𝑐) = (𝑆𝑐))
552550, 551clim 14432 . . . . . . . . 9 (𝜑 → (𝑆 ⇝ (lim sup‘𝑆) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))))
553547, 552mpbid 222 . . . . . . . 8 (𝜑 → ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎)))
554553simprd 483 . . . . . . 7 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
555554adantr 466 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
556 simpr 471 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
557556rphalfcld 12086 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
558 breq2 4791 . . . . . . . . 9 (𝑎 = (𝑥 / 2) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎 ↔ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
559558anbi2d 614 . . . . . . . 8 (𝑎 = (𝑥 / 2) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
560559rexralbidv 3206 . . . . . . 7 (𝑎 = (𝑥 / 2) → (∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
561560rspccva 3459 . . . . . 6 ((∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ∧ (𝑥 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
562555, 557, 561syl2anc 573 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
563458, 562r19.29a 3226 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
564412, 563r19.29a 3226 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
565564ralrimiva 3115 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
566 ioosscn 40234 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
567566a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
568461, 567, 85ellimc3 23862 . 2 (𝜑 → ((lim sup‘𝑆) ∈ (𝐹 lim 𝐵) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))))
569135, 565, 568mpbir2and 692 1 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  ∃wrex 3062  {crab 3065  Vcvv 3351   ⊆ wss 3723  ∅c0 4063  ifcif 4226   class class class wbr 4787   ↦ cmpt 4864  dom cdm 5250  ran crn 5251  Rel wrel 5255  ⟶wf 6026  ‘cfv 6030  (class class class)co 6795  supcsup 8505  infcinf 8506  ℂcc 10139  ℝcr 10140  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146  +∞cpnf 10276  ℝ*cxr 10278   < clt 10279   ≤ cle 10280   − cmin 10471   / cdiv 10889  ℕcn 11225  2c2 11275  ℕ0cn0 11498  ℤcz 11583  ℤ≥cuz 11892  ℝ+crp 12034  (,)cioo 12379  ⌊cfl 12798  abscabs 14181  lim supclsp 14408   ⇝ cli 14422  –cn→ccncf 22898   limℂ climc 23845   D cdv 23846 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220  ax-mulf 10221 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-om 7216  df-1st 7318  df-2nd 7319  df-supp 7450  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-er 7899  df-map 8014  df-pm 8015  df-ixp 8066  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fsupp 8435  df-fi 8476  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-z 11584  df-dec 11700  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-cmp 21410  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850 This theorem is referenced by:  ioodvbdlimc2  40665
 Copyright terms: Public domain W3C validator