Step | Hyp | Ref
| Expression |
1 | | uzssz 12603 |
. . . . . 6
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
2 | | zssre 12326 |
. . . . . 6
⊢ ℤ
⊆ ℝ |
3 | 1, 2 | sstri 3930 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 →
(ℤ≥‘𝑀) ⊆ ℝ) |
5 | | ioodvbdlimc2lem.m |
. . . . . . 7
⊢ 𝑀 = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) |
6 | | ioodvbdlimc2lem.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | | ioodvbdlimc2lem.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | 6, 7 | resubcld 11403 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
9 | | ioodvbdlimc2lem.altb |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 < 𝐵) |
10 | 7, 6 | posdifd 11562 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
11 | 9, 10 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
12 | 11 | gt0ne0d 11539 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
13 | 8, 12 | rereccld 11802 |
. . . . . . . . 9
⊢ (𝜑 → (1 / (𝐵 − 𝐴)) ∈ ℝ) |
14 | | 0red 10978 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℝ) |
15 | 8, 11 | recgt0d 11909 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (1 / (𝐵 − 𝐴))) |
16 | 14, 13, 15 | ltled 11123 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (1 / (𝐵 − 𝐴))) |
17 | | flge0nn0 13540 |
. . . . . . . . 9
⊢ (((1 /
(𝐵 − 𝐴)) ∈ ℝ ∧ 0 ≤
(1 / (𝐵 − 𝐴))) → (⌊‘(1 /
(𝐵 − 𝐴))) ∈
ℕ0) |
18 | 13, 16, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(1 / (𝐵 − 𝐴))) ∈
ℕ0) |
19 | | peano2nn0 12273 |
. . . . . . . 8
⊢
((⌊‘(1 / (𝐵 − 𝐴))) ∈ ℕ0 →
((⌊‘(1 / (𝐵
− 𝐴))) + 1) ∈
ℕ0) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(1 /
(𝐵 − 𝐴))) + 1) ∈
ℕ0) |
21 | 5, 20 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
22 | 21 | nn0zd 12424 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | | eqid 2738 |
. . . . . 6
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
24 | 23 | uzsup 13583 |
. . . . 5
⊢ (𝑀 ∈ ℤ →
sup((ℤ≥‘𝑀), ℝ*, < ) =
+∞) |
25 | 22, 24 | syl 17 |
. . . 4
⊢ (𝜑 →
sup((ℤ≥‘𝑀), ℝ*, < ) =
+∞) |
26 | | ioodvbdlimc2lem.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
27 | 26 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
28 | 7 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈
ℝ*) |
30 | 6 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐵 ∈
ℝ*) |
32 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐵 ∈ ℝ) |
33 | | eluzelre 12593 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℝ) |
34 | 33 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℝ) |
35 | | 0red 10978 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℝ) |
36 | | 0red 10978 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 0 ∈ ℝ) |
37 | | 1red 10976 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 1 ∈ ℝ) |
38 | 36, 37 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (0 + 1) ∈
ℝ) |
39 | 38 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (0 + 1) ∈
ℝ) |
40 | 36 | ltp1d 11905 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 0 < (0 + 1)) |
41 | 40 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 0 < (0 +
1)) |
42 | | eluzel2 12587 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
43 | 42 | zred 12426 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
44 | 43 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ) |
45 | 13 | flcld 13518 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (⌊‘(1 / (𝐵 − 𝐴))) ∈ ℤ) |
46 | 45 | zred 12426 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (⌊‘(1 / (𝐵 − 𝐴))) ∈ ℝ) |
47 | | 1red 10976 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℝ) |
48 | 18 | nn0ge0d 12296 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ (⌊‘(1 /
(𝐵 − 𝐴)))) |
49 | 14, 46, 47, 48 | leadd1dd 11589 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ≤
((⌊‘(1 / (𝐵
− 𝐴))) +
1)) |
50 | 49, 5 | breqtrrdi 5116 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 + 1) ≤ 𝑀) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (0 + 1) ≤ 𝑀) |
52 | | eluzle 12595 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑗) |
53 | 52 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑗) |
54 | 39, 44, 34, 51, 53 | letrd 11132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (0 + 1) ≤ 𝑗) |
55 | 35, 39, 34, 41, 54 | ltletrd 11135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 0 < 𝑗) |
56 | 55 | gt0ne0d 11539 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ≠ 0) |
57 | 34, 56 | rereccld 11802 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (1 / 𝑗) ∈
ℝ) |
58 | 32, 57 | resubcld 11403 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑗)) ∈ ℝ) |
59 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) |
60 | 21 | nn0red 12294 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
61 | 14, 47 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ∈
ℝ) |
62 | 46, 47 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((⌊‘(1 /
(𝐵 − 𝐴))) + 1) ∈
ℝ) |
63 | 14 | ltp1d 11905 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (0 +
1)) |
64 | 14, 61, 62, 63, 49 | ltletrd 11135 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < ((⌊‘(1
/ (𝐵 − 𝐴))) + 1)) |
65 | 64, 5 | breqtrrdi 5116 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑀) |
66 | 65 | gt0ne0d 11539 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≠ 0) |
67 | 60, 66 | rereccld 11802 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
68 | 67 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (1 / 𝑀) ∈ ℝ) |
69 | 32, 68 | resubcld 11403 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑀)) ∈ ℝ) |
70 | 5 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢
((⌊‘(1 / (𝐵 − 𝐴))) + 1) = 𝑀 |
71 | 70 | oveq2i 7286 |
. . . . . . . . . . . 12
⊢ (1 /
((⌊‘(1 / (𝐵
− 𝐴))) + 1)) = (1 /
𝑀) |
72 | 71, 67 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / ((⌊‘(1 /
(𝐵 − 𝐴))) + 1)) ∈
ℝ) |
73 | 13, 15 | elrpd 12769 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 / (𝐵 − 𝐴)) ∈
ℝ+) |
74 | 62, 64 | elrpd 12769 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((⌊‘(1 /
(𝐵 − 𝐴))) + 1) ∈
ℝ+) |
75 | | 1rp 12734 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ+ |
76 | 75 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ+) |
77 | | fllelt 13517 |
. . . . . . . . . . . . . . 15
⊢ ((1 /
(𝐵 − 𝐴)) ∈ ℝ →
((⌊‘(1 / (𝐵
− 𝐴))) ≤ (1 /
(𝐵 − 𝐴)) ∧ (1 / (𝐵 − 𝐴)) < ((⌊‘(1 / (𝐵 − 𝐴))) + 1))) |
78 | 13, 77 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((⌊‘(1 /
(𝐵 − 𝐴))) ≤ (1 / (𝐵 − 𝐴)) ∧ (1 / (𝐵 − 𝐴)) < ((⌊‘(1 / (𝐵 − 𝐴))) + 1))) |
79 | 78 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 / (𝐵 − 𝐴)) < ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) |
80 | 73, 74, 76, 79 | ltdiv2dd 42833 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 / ((⌊‘(1 /
(𝐵 − 𝐴))) + 1)) < (1 / (1 / (𝐵 − 𝐴)))) |
81 | 8 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
82 | 81, 12 | recrecd 11748 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 / (1 / (𝐵 − 𝐴))) = (𝐵 − 𝐴)) |
83 | 80, 82 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / ((⌊‘(1 /
(𝐵 − 𝐴))) + 1)) < (𝐵 − 𝐴)) |
84 | 72, 8, 6, 83 | ltsub2dd 11588 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − (𝐵 − 𝐴)) < (𝐵 − (1 / ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) |
85 | 6 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
86 | 7 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
87 | 85, 86 | nncand 11337 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − (𝐵 − 𝐴)) = 𝐴) |
88 | 71 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝐵 − (1 / ((⌊‘(1
/ (𝐵 − 𝐴))) + 1))) = (𝐵 − (1 / 𝑀)) |
89 | 88 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − (1 / ((⌊‘(1 / (𝐵 − 𝐴))) + 1))) = (𝐵 − (1 / 𝑀))) |
90 | 84, 87, 89 | 3brtr3d 5105 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < (𝐵 − (1 / 𝑀))) |
91 | 90 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐴 < (𝐵 − (1 / 𝑀))) |
92 | 60, 65 | elrpd 12769 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
93 | 92 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈
ℝ+) |
94 | 34, 55 | elrpd 12769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℝ+) |
95 | | 1red 10976 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 1 ∈
ℝ) |
96 | | 0le1 11498 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
97 | 96 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 0 ≤
1) |
98 | 93, 94, 95, 97, 53 | lediv2ad 12794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (1 / 𝑗) ≤ (1 / 𝑀)) |
99 | 57, 68, 32, 98 | lesub2dd 11592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑀)) ≤ (𝐵 − (1 / 𝑗))) |
100 | 59, 69, 58, 91, 99 | ltletrd 11135 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐴 < (𝐵 − (1 / 𝑗))) |
101 | 94 | rpreccld 12782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (1 / 𝑗) ∈
ℝ+) |
102 | 32, 101 | ltsubrpd 12804 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑗)) < 𝐵) |
103 | 29, 31, 58, 100, 102 | eliood 43036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵)) |
104 | 27, 103 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝐵 − (1 / 𝑗))) ∈ ℝ) |
105 | | ioodvbdlimc2lem.s |
. . . . 5
⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) |
106 | 104, 105 | fmptd 6988 |
. . . 4
⊢ (𝜑 → 𝑆:(ℤ≥‘𝑀)⟶ℝ) |
107 | | ioodvbdlimc2lem.dmdv |
. . . . . 6
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
108 | | ioodvbdlimc2lem.dvbd |
. . . . . 6
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
109 | 7, 6, 9, 26, 107, 108 | dvbdfbdioo 43471 |
. . . . 5
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
110 | 60 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) → 𝑀 ∈ ℝ) |
111 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
112 | 105 | fvmpt2 6886 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ (𝐹‘(𝐵 − (1 / 𝑗))) ∈ ℝ) → (𝑆‘𝑗) = (𝐹‘(𝐵 − (1 / 𝑗)))) |
113 | 111, 104,
112 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑆‘𝑗) = (𝐹‘(𝐵 − (1 / 𝑗)))) |
114 | 113 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (abs‘(𝑆‘𝑗)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗))))) |
115 | 114 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (abs‘(𝑆‘𝑗)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗))))) |
116 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) |
117 | 103 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵)) |
118 | | 2fveq3 6779 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐵 − (1 / 𝑗)) → (abs‘(𝐹‘𝑥)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗))))) |
119 | 118 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐵 − (1 / 𝑗)) → ((abs‘(𝐹‘𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏)) |
120 | 119 | rspccva 3560 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
(𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 ∧ (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏) |
121 | 116, 117,
120 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏) |
122 | 115, 121 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (abs‘(𝑆‘𝑗)) ≤ 𝑏) |
123 | 122 | a1d 25 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑀 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏)) |
124 | 123 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) → ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑀 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏)) |
125 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑀 → (𝑘 ≤ 𝑗 ↔ 𝑀 ≤ 𝑗)) |
126 | 125 | imbi1d 342 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → ((𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏) ↔ (𝑀 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏))) |
127 | 126 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (∀𝑗 ∈ (ℤ≥‘𝑀)(𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑀 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏))) |
128 | 127 | rspcev 3561 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧
∀𝑗 ∈
(ℤ≥‘𝑀)(𝑀 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏)) |
129 | 110, 124,
128 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏)) |
130 | 129 | ex 413 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏))) |
131 | 130 | reximdv 3202 |
. . . . 5
⊢ (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏))) |
132 | 109, 131 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ≥‘𝑀)(𝑘 ≤ 𝑗 → (abs‘(𝑆‘𝑗)) ≤ 𝑏)) |
133 | 4, 25, 106, 132 | limsupre 43182 |
. . 3
⊢ (𝜑 → (lim sup‘𝑆) ∈
ℝ) |
134 | 133 | recnd 11003 |
. 2
⊢ (𝜑 → (lim sup‘𝑆) ∈
ℂ) |
135 | | eluzelre 12593 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘𝑁) → 𝑗 ∈ ℝ) |
136 | 135 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℝ) |
137 | | 0red 10978 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ∈ ℝ) |
138 | 45 | peano2zd 12429 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((⌊‘(1 /
(𝐵 − 𝐴))) + 1) ∈
ℤ) |
139 | 5, 138 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
140 | 139 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
141 | 140 | zred 12426 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℝ) |
142 | 141 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈ ℝ) |
143 | 65 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 < 𝑀) |
144 | | ioodvbdlimc2lem.n |
. . . . . . . . . . . . . 14
⊢ 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) |
145 | | ioodvbdlimc2lem.y |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
146 | | ioomidp 43052 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
147 | 7, 6, 9, 146 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
148 | | ne0i 4268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
150 | | ioossre 13140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐴(,)𝐵) ⊆ ℝ |
151 | 150 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
152 | | dvfre 25115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
153 | 26, 151, 152 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
154 | 107 | feq2d 6586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ)) |
155 | 153, 154 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ) |
156 | 155 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ) |
157 | 156 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
158 | 157 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ) |
159 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
160 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ sup(ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
161 | 149, 158,
108, 159, 160 | suprnmpt 42710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧
∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
162 | 161 | simpld 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈
ℝ) |
163 | 145, 162 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑌 ∈ ℝ) |
164 | 163 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑌 ∈
ℝ) |
165 | | rpre 12738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
166 | 165 | rehalfcld 12220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ) |
167 | 166 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ) |
168 | 165 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
169 | 168 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
170 | | 2cnd 12051 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
171 | | rpne0 12746 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
172 | 171 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
173 | | 2ne0 12077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ≠
0 |
174 | 173 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ≠
0) |
175 | 169, 170,
172, 174 | divne0d 11767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ≠ 0) |
176 | 164, 167,
175 | redivcld 11803 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑌 / (𝑥 / 2)) ∈ ℝ) |
177 | 176 | flcld 13518 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(⌊‘(𝑌 / (𝑥 / 2))) ∈
ℤ) |
178 | 177 | peano2zd 12429 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈
ℤ) |
179 | 178, 140 | ifcld 4505 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ) |
180 | 144, 179 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈
ℤ) |
181 | 180 | zred 12426 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈
ℝ) |
182 | 181 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑁 ∈ ℝ) |
183 | 178 | zred 12426 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈
ℝ) |
184 | | max1 12919 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℝ ∧
((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
→ 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)) |
185 | 141, 183,
184 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)) |
186 | 185, 144 | breqtrrdi 5116 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ≤ 𝑁) |
187 | 186 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑀 ≤ 𝑁) |
188 | | eluzle 12595 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑗) |
189 | 188 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑁 ≤ 𝑗) |
190 | 142, 182,
136, 187, 189 | letrd 11132 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑀 ≤ 𝑗) |
191 | 137, 142,
136, 143, 190 | ltletrd 11135 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 < 𝑗) |
192 | 191 | gt0ne0d 11539 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ≠ 0) |
193 | 136, 192 | rereccld 11802 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (1 / 𝑗) ∈ ℝ) |
194 | 136, 191 | recgt0d 11909 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 < (1 / 𝑗)) |
195 | 193, 194 | elrpd 12769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (1 / 𝑗) ∈
ℝ+) |
196 | 195 | adantr 481 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → (1 / 𝑗) ∈
ℝ+) |
197 | | ioodvbdlimc2lem.ch |
. . . . . . . . 9
⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) |
198 | 197 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) |
199 | | simp-5l 782 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → 𝜑) |
200 | 198, 199 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝜑) |
201 | 200, 26 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
202 | 198 | simplrd 767 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑧 ∈ (𝐴(,)𝐵)) |
203 | 201, 202 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝐹‘𝑧) ∈ ℝ) |
204 | 203 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝐹‘𝑧) ∈ ℂ) |
205 | 200, 106 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑆:(ℤ≥‘𝑀)⟶ℝ) |
206 | | simp-5r 783 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → 𝑥 ∈ ℝ+) |
207 | 198, 206 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → 𝑥 ∈ ℝ+) |
208 | | eluz2 12588 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
209 | 140, 180,
186, 208 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈
(ℤ≥‘𝑀)) |
210 | 200, 207,
209 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝑁 ∈ (ℤ≥‘𝑀)) |
211 | | uzss 12605 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
213 | | simp-4r 781 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → 𝑗 ∈ (ℤ≥‘𝑁)) |
214 | 198, 213 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑗 ∈ (ℤ≥‘𝑁)) |
215 | 212, 214 | sseldd 3922 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑗 ∈ (ℤ≥‘𝑀)) |
216 | 205, 215 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℝ) |
217 | 216 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℂ) |
218 | 200, 134 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (lim sup‘𝑆) ∈
ℂ) |
219 | 204, 217,
218 | npncand 11356 |
. . . . . . . . . . . 12
⊢ (𝜒 → (((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆))) = ((𝐹‘𝑧) − (lim sup‘𝑆))) |
220 | 219 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝐹‘𝑧) − (lim sup‘𝑆)) = (((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆)))) |
221 | 220 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) = (abs‘(((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆))))) |
222 | 203, 216 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → ((𝐹‘𝑧) − (𝑆‘𝑗)) ∈ ℝ) |
223 | 200, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (lim sup‘𝑆) ∈
ℝ) |
224 | 216, 223 | resubcld 11403 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → ((𝑆‘𝑗) − (lim sup‘𝑆)) ∈ ℝ) |
225 | 222, 224 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆))) ∈ ℝ) |
226 | 225 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (𝜒 → (((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆))) ∈ ℂ) |
227 | 226 | abscld 15148 |
. . . . . . . . . . 11
⊢ (𝜒 → (abs‘(((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆)))) ∈ ℝ) |
228 | 222 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝜒 → ((𝐹‘𝑧) − (𝑆‘𝑗)) ∈ ℂ) |
229 | 228 | abscld 15148 |
. . . . . . . . . . . 12
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) ∈ ℝ) |
230 | 224 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝜒 → ((𝑆‘𝑗) − (lim sup‘𝑆)) ∈ ℂ) |
231 | 230 | abscld 15148 |
. . . . . . . . . . . 12
⊢ (𝜒 → (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) ∈ ℝ) |
232 | 229, 231 | readdcld 11004 |
. . . . . . . . . . 11
⊢ (𝜒 → ((abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) + (abs‘((𝑆‘𝑗) − (lim sup‘𝑆)))) ∈ ℝ) |
233 | 207 | rpred 12772 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑥 ∈ ℝ) |
234 | 228, 230 | abstrid 15168 |
. . . . . . . . . . 11
⊢ (𝜒 → (abs‘(((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆)))) ≤ ((abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) + (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))))) |
235 | 233 | rehalfcld 12220 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑥 / 2) ∈ ℝ) |
236 | 200, 215,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑆‘𝑗) = (𝐹‘(𝐵 − (1 / 𝑗)))) |
237 | 236 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ((𝐹‘𝑧) − (𝑆‘𝑗)) = ((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) |
238 | 237 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) = (abs‘((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗)))))) |
239 | 238, 229 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ∈ ℝ) |
240 | 200, 163 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑌 ∈ ℝ) |
241 | 150, 202 | sselid 3919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝑧 ∈ ℝ) |
242 | 200, 215,
58 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝐵 − (1 / 𝑗)) ∈ ℝ) |
243 | 241, 242 | resubcld 11403 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) ∈ ℝ) |
244 | 240, 243 | remulcld 11005 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ∈ ℝ) |
245 | 200, 7 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝐴 ∈ ℝ) |
246 | 200, 6 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝐵 ∈ ℝ) |
247 | 200, 107 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
248 | 161 | simprd 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
249 | 145 | breq2i 5082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
250 | 249 | ralbii 3092 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 ∈
(𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
251 | 248, 250 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌) |
252 | 200, 251 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌) |
253 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑤)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
254 | 253 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)) |
255 | 254 | cbvralvw 3383 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
(𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌) |
256 | 252, 255 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → ∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌) |
257 | 200, 215,
103 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵)) |
258 | 242 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝐵 − (1 / 𝑗)) ∈
ℝ*) |
259 | 200, 30 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → 𝐵 ∈
ℝ*) |
260 | 3, 215 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 𝑗 ∈ ℝ) |
261 | 200, 215,
56 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 𝑗 ≠ 0) |
262 | 260, 261 | rereccld 11802 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (1 / 𝑗) ∈ ℝ) |
263 | 246, 241 | resubcld 11403 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝐵 − 𝑧) ∈ ℝ) |
264 | 241, 246 | resubcld 11403 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (𝑧 − 𝐵) ∈ ℝ) |
265 | 264 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (𝑧 − 𝐵) ∈ ℂ) |
266 | 265 | abscld 15148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (abs‘(𝑧 − 𝐵)) ∈ ℝ) |
267 | 263 | leabsd 15126 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (𝐵 − 𝑧) ≤ (abs‘(𝐵 − 𝑧))) |
268 | 200, 85 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝐵 ∈ ℂ) |
269 | 241 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑧 ∈ ℂ) |
270 | 268, 269 | abssubd 15165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (abs‘(𝐵 − 𝑧)) = (abs‘(𝑧 − 𝐵))) |
271 | 267, 270 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝐵 − 𝑧) ≤ (abs‘(𝑧 − 𝐵))) |
272 | 198 | simprd 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) |
273 | 263, 266,
262, 271, 272 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝐵 − 𝑧) < (1 / 𝑗)) |
274 | 246, 241,
262, 273 | ltsub23d 11580 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝐵 − (1 / 𝑗)) < 𝑧) |
275 | 200, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐴 ∈
ℝ*) |
276 | | iooltub 43048 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑧
∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵) |
277 | 275, 259,
202, 276 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → 𝑧 < 𝐵) |
278 | 258, 259,
241, 274, 277 | eliood 43036 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝑧 ∈ ((𝐵 − (1 / 𝑗))(,)𝐵)) |
279 | 245, 246,
201, 247, 240, 256, 257, 278 | dvbdfbdioolem1 43469 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → ((abs‘((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ∧ (abs‘((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝐵 − 𝐴)))) |
280 | 279 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗))))) |
281 | 200, 215,
57 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (1 / 𝑗) ∈ ℝ) |
282 | 240, 281 | remulcld 11005 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑌 · (1 / 𝑗)) ∈ ℝ) |
283 | 155, 147 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ) |
284 | 283 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
285 | 284 | abscld 15148 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
286 | 284 | absge0d 15156 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ≤
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
287 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
288 | 145 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ sup(ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌 |
289 | 288 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = ((𝐴 + 𝐵) / 2) → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌) |
290 | 287, 289 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)) |
291 | 290 | rspcva 3559 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) →
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌) |
292 | 147, 248,
291 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌) |
293 | 14, 285, 163, 286, 292 | letrd 11132 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 ≤ 𝑌) |
294 | 200, 293 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 0 ≤ 𝑌) |
295 | 281 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (1 / 𝑗) ∈ ℂ) |
296 | | sub31 42829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (1 / 𝑗) ∈ ℂ) → (𝑧 − (𝐵 − (1 / 𝑗))) = ((1 / 𝑗) − (𝐵 − 𝑧))) |
297 | 269, 268,
295, 296 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) = ((1 / 𝑗) − (𝐵 − 𝑧))) |
298 | 241, 246 | posdifd 11562 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (𝑧 < 𝐵 ↔ 0 < (𝐵 − 𝑧))) |
299 | 277, 298 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → 0 < (𝐵 − 𝑧)) |
300 | 263, 299 | elrpd 12769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝐵 − 𝑧) ∈
ℝ+) |
301 | 281, 300 | ltsubrpd 12804 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ((1 / 𝑗) − (𝐵 − 𝑧)) < (1 / 𝑗)) |
302 | 297, 301 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) < (1 / 𝑗)) |
303 | 243, 281,
302 | ltled 11123 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) ≤ (1 / 𝑗)) |
304 | 243, 281,
240, 294, 303 | lemul2ad 11915 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ≤ (𝑌 · (1 / 𝑗))) |
305 | 282 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ∈ ℝ) |
306 | 235 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 𝑌 = 0) → (𝑥 / 2) ∈ ℝ) |
307 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 = 0 → (𝑌 · (1 / 𝑗)) = (0 · (1 / 𝑗))) |
308 | 295 | mul02d 11173 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (0 · (1 / 𝑗)) = 0) |
309 | 307, 308 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) = 0) |
310 | 207 | rphalfcld 12784 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (𝑥 / 2) ∈
ℝ+) |
311 | 310 | rpgt0d 12775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 0 < (𝑥 / 2)) |
312 | 311 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑌 = 0) → 0 < (𝑥 / 2)) |
313 | 309, 312 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) < (𝑥 / 2)) |
314 | 305, 306,
313 | ltled 11123 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2)) |
315 | 240 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ∈ ℝ) |
316 | 294 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ ¬ 𝑌 = 0) → 0 ≤ 𝑌) |
317 | | neqne 2951 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑌 = 0 → 𝑌 ≠ 0) |
318 | 317 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0) |
319 | 315, 316,
318 | ne0gt0d 11112 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ ¬ 𝑌 = 0) → 0 < 𝑌) |
320 | 282 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ∈ ℝ) |
321 | 3, 210 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑁 ∈ ℝ) |
322 | | 0red 10978 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → 0 ∈
ℝ) |
323 | 200, 207,
141 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → 𝑀 ∈ ℝ) |
324 | 200, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → 0 < 𝑀) |
325 | 200, 207,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → 𝑀 ≤ 𝑁) |
326 | 322, 323,
321, 324, 325 | ltletrd 11135 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → 0 < 𝑁) |
327 | 326 | gt0ne0d 11539 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑁 ≠ 0) |
328 | 321, 327 | rereccld 11802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (1 / 𝑁) ∈ ℝ) |
329 | 240, 328 | remulcld 11005 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑌 · (1 / 𝑁)) ∈ ℝ) |
330 | 329 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ∈ ℝ) |
331 | 235 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℝ) |
332 | 281 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ∈ ℝ) |
333 | 328 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ∈ ℝ) |
334 | 240 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℝ) |
335 | 294 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 𝑌) |
336 | 321, 326 | elrpd 12769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑁 ∈
ℝ+) |
337 | 200, 215,
94 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑗 ∈ ℝ+) |
338 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 1 ∈
ℝ) |
339 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 0 ≤ 1) |
340 | 214, 188 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑁 ≤ 𝑗) |
341 | 336, 337,
338, 339, 340 | lediv2ad 12794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (1 / 𝑗) ≤ (1 / 𝑁)) |
342 | 341 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ≤ (1 / 𝑁)) |
343 | 332, 333,
334, 335, 342 | lemul2ad 11915 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑌 · (1 / 𝑁))) |
344 | 233 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → 𝑥 ∈ ℂ) |
345 | | 2cnd 12051 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → 2 ∈
ℂ) |
346 | 207 | rpne0d 12777 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → 𝑥 ≠ 0) |
347 | 173 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → 2 ≠ 0) |
348 | 344, 345,
346, 347 | divne0d 11767 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → (𝑥 / 2) ≠ 0) |
349 | 240, 235,
348 | redivcld 11803 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → (𝑌 / (𝑥 / 2)) ∈ ℝ) |
350 | 349 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ) |
351 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜒 ∧ 0 < 𝑌) → 0 < 𝑌) |
352 | 311 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑥 / 2)) |
353 | 334, 331,
351, 352 | divgt0d 11910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑌 / (𝑥 / 2))) |
354 | 350, 353 | elrpd 12769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈
ℝ+) |
355 | 354 | rprecred 12783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 0 < 𝑌) → (1 / (𝑌 / (𝑥 / 2))) ∈ ℝ) |
356 | 336 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → 𝑁 ∈
ℝ+) |
357 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → 1 ∈ ℝ) |
358 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 1) |
359 | 349 | flcld 13518 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜒 → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ) |
360 | 359 | peano2zd 12429 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ) |
361 | 360 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) |
362 | 200, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜒 → 𝑀 ∈ ℤ) |
363 | 360, 362 | ifcld 4505 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜒 → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ) |
364 | 144, 363 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → 𝑁 ∈ ℤ) |
365 | 364 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → 𝑁 ∈ ℝ) |
366 | | flltp1 13520 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑌 / (𝑥 / 2)) ∈ ℝ → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1)) |
367 | 349, 366 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1)) |
368 | 200, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜒 → 𝑀 ∈ ℝ) |
369 | | max2 12921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑀 ∈ ℝ ∧
((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
→ ((⌊‘(𝑌 /
(𝑥 / 2))) + 1) ≤
if(𝑀 ≤
((⌊‘(𝑌 / (𝑥 / 2))) + 1),
((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)) |
370 | 368, 361,
369 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)) |
371 | 370, 144 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ 𝑁) |
372 | 349, 361,
365, 367, 371 | ltletrd 11135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → (𝑌 / (𝑥 / 2)) < 𝑁) |
373 | 349, 321,
372 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → (𝑌 / (𝑥 / 2)) ≤ 𝑁) |
374 | 373 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≤ 𝑁) |
375 | 354, 356,
357, 358, 374 | lediv2ad 12794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ≤ (1 / (𝑌 / (𝑥 / 2)))) |
376 | 333, 355,
334, 335, 375 | lemul2ad 11915 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑌 · (1 / (𝑌 / (𝑥 / 2))))) |
377 | 334 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℂ) |
378 | 350 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℂ) |
379 | 353 | gt0ne0d 11539 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≠ 0) |
380 | 377, 378,
379 | divrecd 11754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑌 · (1 / (𝑌 / (𝑥 / 2))))) |
381 | 331 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℂ) |
382 | 351 | gt0ne0d 11539 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → 𝑌 ≠ 0) |
383 | 348 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ≠ 0) |
384 | 377, 381,
382, 383 | ddcand 11771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑥 / 2)) |
385 | 380, 384 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / (𝑌 / (𝑥 / 2)))) = (𝑥 / 2)) |
386 | 376, 385 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑥 / 2)) |
387 | 320, 330,
331, 343, 386 | letrd 11132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2)) |
388 | 319, 387 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ ¬ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2)) |
389 | 314, 388 | pm2.61dan 810 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2)) |
390 | 244, 282,
235, 304, 389 | letrd 11132 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ≤ (𝑥 / 2)) |
391 | 239, 244,
235, 280, 390 | letrd 11132 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑥 / 2)) |
392 | 238, 391 | eqbrtrd 5096 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) ≤ (𝑥 / 2)) |
393 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) |
394 | 198, 393 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) |
395 | 229, 231,
235, 235, 392, 394 | leltaddd 11597 |
. . . . . . . . . . . 12
⊢ (𝜒 → ((abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) + (abs‘((𝑆‘𝑗) − (lim sup‘𝑆)))) < ((𝑥 / 2) + (𝑥 / 2))) |
396 | 344 | 2halvesd 12219 |
. . . . . . . . . . . 12
⊢ (𝜒 → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥) |
397 | 395, 396 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ (𝜒 → ((abs‘((𝐹‘𝑧) − (𝑆‘𝑗))) + (abs‘((𝑆‘𝑗) − (lim sup‘𝑆)))) < 𝑥) |
398 | 227, 232,
233, 234, 397 | lelttrd 11133 |
. . . . . . . . . 10
⊢ (𝜒 → (abs‘(((𝐹‘𝑧) − (𝑆‘𝑗)) + ((𝑆‘𝑗) − (lim sup‘𝑆)))) < 𝑥) |
399 | 221, 398 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ (𝜒 → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥) |
400 | 197, 399 | sylbir 234 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥) |
401 | 400 | adantrl 713 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥) |
402 | 401 | ex 413 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) |
403 | 402 | ralrimiva 3103 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) |
404 | | brimralrspcev 5135 |
. . . . 5
⊢ (((1 /
𝑗) ∈
ℝ+ ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) |
405 | 196, 403,
404 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
(ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) |
406 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ≤ 𝑁) → 𝑏 ≤ 𝑁) |
407 | 406 | iftrued 4467 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ≤ 𝑁) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) = 𝑁) |
408 | | uzid 12597 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
409 | 180, 408 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈
(ℤ≥‘𝑁)) |
410 | 409 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ≤ 𝑁) → 𝑁 ∈ (ℤ≥‘𝑁)) |
411 | 407, 410 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ≤ 𝑁) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑁)) |
412 | 411 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ 𝑏 ≤ 𝑁) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑁)) |
413 | | iffalse 4468 |
. . . . . . . . . 10
⊢ (¬
𝑏 ≤ 𝑁 → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) = 𝑏) |
414 | 413 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) = 𝑏) |
415 | 180 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑁 ∈ ℤ) |
416 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑏 ∈ ℤ) |
417 | 415 | zred 12426 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑁 ∈ ℝ) |
418 | 416 | zred 12426 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑏 ∈ ℝ) |
419 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → ¬ 𝑏 ≤ 𝑁) |
420 | 417, 418 | ltnled 11122 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → (𝑁 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑁)) |
421 | 419, 420 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑁 < 𝑏) |
422 | 417, 418,
421 | ltled 11123 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑁 ≤ 𝑏) |
423 | | eluz2 12588 |
. . . . . . . . . 10
⊢ (𝑏 ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ≤ 𝑏)) |
424 | 415, 416,
422, 423 | syl3anbrc 1342 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → 𝑏 ∈ (ℤ≥‘𝑁)) |
425 | 414, 424 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬
𝑏 ≤ 𝑁) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑁)) |
426 | 412, 425 | pm2.61dan 810 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑁)) |
427 | 426 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑁)) |
428 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∀𝑐 ∈ (ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) |
429 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈
ℤ) |
430 | 180 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈
ℤ) |
431 | 430, 429 | ifcld 4505 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ ℤ) |
432 | 429 | zred 12426 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈
ℝ) |
433 | 430 | zred 12426 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈
ℝ) |
434 | | max1 12919 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑏 ≤ if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) |
435 | 432, 433,
434 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ≤ if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) |
436 | | eluz2 12588 |
. . . . . . . . . 10
⊢ (if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑏) ↔ (𝑏 ∈ ℤ ∧ if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ ℤ ∧ 𝑏 ≤ if(𝑏 ≤ 𝑁, 𝑁, 𝑏))) |
437 | 429, 431,
435, 436 | syl3anbrc 1342 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑏)) |
438 | 437 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑏)) |
439 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑐 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → (𝑆‘𝑐) = (𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏))) |
440 | 439 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑐 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → ((𝑆‘𝑐) ∈ ℂ ↔ (𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) ∈ ℂ)) |
441 | 439 | fvoveq1d 7297 |
. . . . . . . . . . 11
⊢ (𝑐 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆)))) |
442 | 441 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑐 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → ((abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))) |
443 | 440, 442 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑐 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → (((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ↔ ((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))) |
444 | 443 | rspccva 3560 |
. . . . . . . 8
⊢
((∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑏)) → ((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))) |
445 | 428, 438,
444 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))) |
446 | 445 | simprd 496 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) |
447 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑗 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → (𝑆‘𝑗) = (𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏))) |
448 | 447 | fvoveq1d 7297 |
. . . . . . . 8
⊢ (𝑗 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆)))) |
449 | 448 | breq1d 5084 |
. . . . . . 7
⊢ (𝑗 = if(𝑏 ≤ 𝑁, 𝑁, 𝑏) → ((abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))) |
450 | 449 | rspcev 3561 |
. . . . . 6
⊢
((if(𝑏 ≤ 𝑁, 𝑁, 𝑏) ∈ (ℤ≥‘𝑁) ∧ (abs‘((𝑆‘if(𝑏 ≤ 𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑗 ∈ (ℤ≥‘𝑁)(abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) |
451 | 427, 446,
450 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∃𝑗 ∈ (ℤ≥‘𝑁)(abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) |
452 | | ax-resscn 10928 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
453 | 452 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ⊆
ℂ) |
454 | 26, 453 | fssd 6618 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
455 | | dvcn 25085 |
. . . . . . . . . . . . . 14
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D
𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
456 | 453, 454,
151, 107, 455 | syl31anc 1372 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
457 | | cncffvrn 24061 |
. . . . . . . . . . . . 13
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ)) |
458 | 453, 456,
457 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ)) |
459 | 26, 458 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
460 | | ioodvbdlimc2lem.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐵 − (1 / 𝑗))) |
461 | 103, 460 | fmptd 6988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
462 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) |
463 | | climrel 15201 |
. . . . . . . . . . . . 13
⊢ Rel
⇝ |
464 | 463 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → Rel ⇝
) |
465 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑀) ∈ V |
466 | 465 | mptex 7099 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) ↦ 𝐵) ∈ V |
467 | 466 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵) ∈ V) |
468 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)) |
469 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 = 𝑚) → 𝐵 = 𝐵) |
470 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
471 | 6 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → 𝐵 ∈ ℝ) |
472 | 468, 469,
470, 471 | fvmptd 6882 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)‘𝑚) = 𝐵) |
473 | 23, 22, 467, 85, 472 | climconst 15252 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵) ⇝ 𝐵) |
474 | 465 | mptex 7099 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑀) ↦ (𝐵 − (1 / 𝑗))) ∈ V |
475 | 460, 474 | eqeltri 2835 |
. . . . . . . . . . . . . . 15
⊢ 𝑅 ∈ V |
476 | 475 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ V) |
477 | | 1cnd 10970 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℂ) |
478 | | elnnnn0b 12277 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0
∧ 0 < 𝑀)) |
479 | 21, 65, 478 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℕ) |
480 | | divcnvg 43168 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝑀
∈ ℕ) → (𝑗
∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗)) ⇝ 0) |
481 | 477, 479,
480 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗)) ⇝ 0) |
482 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵) = (𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)) |
483 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 = 𝑖) → 𝐵 = 𝐵) |
484 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
485 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝐵 ∈ ℝ) |
486 | 482, 483,
484, 485 | fvmptd 6882 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)‘𝑖) = 𝐵) |
487 | 486, 485 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)‘𝑖) ∈ ℝ) |
488 | 487 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)‘𝑖) ∈ ℂ) |
489 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗)) = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗))) |
490 | | oveq2 7283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (1 / 𝑗) = (1 / 𝑖)) |
491 | 490 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) ∧ 𝑗 = 𝑖) → (1 / 𝑗) = (1 / 𝑖)) |
492 | 3, 484 | sselid 3919 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ ℝ) |
493 | | 0red 10978 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℝ) |
494 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ) |
495 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 0 < 𝑀) |
496 | | eluzle 12595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑖) |
497 | 496 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑖) |
498 | 493, 494,
492, 495, 497 | ltletrd 11135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 0 < 𝑖) |
499 | 498 | gt0ne0d 11539 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ≠ 0) |
500 | 492, 499 | rereccld 11802 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (1 / 𝑖) ∈
ℝ) |
501 | 489, 491,
484, 500 | fvmptd 6882 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗))‘𝑖) = (1 / 𝑖)) |
502 | 492 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → 𝑖 ∈ ℂ) |
503 | 502, 499 | reccld 11744 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (1 / 𝑖) ∈
ℂ) |
504 | 501, 503 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → ((𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗))‘𝑖) ∈ ℂ) |
505 | 490 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑖 → (𝐵 − (1 / 𝑗)) = (𝐵 − (1 / 𝑖))) |
506 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 − (1 / 𝑖)) ∈ V |
507 | 505, 460,
506 | fvmpt 6875 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → (𝑅‘𝑖) = (𝐵 − (1 / 𝑖))) |
508 | 507 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑅‘𝑖) = (𝐵 − (1 / 𝑖))) |
509 | 486, 501 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (((𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)‘𝑖) − ((𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗))‘𝑖)) = (𝐵 − (1 / 𝑖))) |
510 | 508, 509 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → (𝑅‘𝑖) = (((𝑗 ∈ (ℤ≥‘𝑀) ↦ 𝐵)‘𝑖) − ((𝑗 ∈ (ℤ≥‘𝑀) ↦ (1 / 𝑗))‘𝑖))) |
511 | 23, 22, 473, 476, 481, 488, 504, 510 | climsub 15343 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ⇝ (𝐵 − 0)) |
512 | 85 | subid1d 11321 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 0) = 𝐵) |
513 | 511, 512 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ⇝ 𝐵) |
514 | | releldm 5853 |
. . . . . . . . . . . 12
⊢ ((Rel
⇝ ∧ 𝑅 ⇝
𝐵) → 𝑅 ∈ dom ⇝ ) |
515 | 464, 513,
514 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ dom ⇝ ) |
516 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑘 → (ℤ≥‘𝑙) =
(ℤ≥‘𝑘)) |
517 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑘 → (𝑅‘𝑙) = (𝑅‘𝑘)) |
518 | 517 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑘 → ((𝑅‘ℎ) − (𝑅‘𝑙)) = ((𝑅‘ℎ) − (𝑅‘𝑘))) |
519 | 518 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑘 → (abs‘((𝑅‘ℎ) − (𝑅‘𝑙))) = (abs‘((𝑅‘ℎ) − (𝑅‘𝑘)))) |
520 | 519 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑘 → ((abs‘((𝑅‘ℎ) − (𝑅‘𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
521 | 516, 520 | raleqbidv 3336 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑘 → (∀ℎ ∈ (ℤ≥‘𝑙)(abs‘((𝑅‘ℎ) − (𝑅‘𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀ℎ ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
522 | 521 | cbvrabv 3426 |
. . . . . . . . . . . . 13
⊢ {𝑙 ∈
(ℤ≥‘𝑀) ∣ ∀ℎ ∈ (ℤ≥‘𝑙)(abs‘((𝑅‘ℎ) − (𝑅‘𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀ℎ ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} |
523 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑖 → (𝑅‘ℎ) = (𝑅‘𝑖)) |
524 | 523 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑖 → (abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝑘)))) |
525 | 524 | breq1d 5084 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑖 → ((abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
526 | 525 | cbvralvw 3383 |
. . . . . . . . . . . . . . 15
⊢
(∀ℎ ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
527 | 526 | rgenw 3076 |
. . . . . . . . . . . . . 14
⊢
∀𝑘 ∈
(ℤ≥‘𝑀)(∀ℎ ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
528 | | rabbi 3316 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑀)(∀ℎ ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) ↔ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀ℎ ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
529 | 527, 528 | mpbi 229 |
. . . . . . . . . . . . 13
⊢ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀ℎ ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘ℎ) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} |
530 | 522, 529 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ {𝑙 ∈
(ℤ≥‘𝑀) ∣ ∀ℎ ∈ (ℤ≥‘𝑙)(abs‘((𝑅‘ℎ) − (𝑅‘𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} |
531 | 530 | infeq1i 9237 |
. . . . . . . . . . 11
⊢
inf({𝑙 ∈
(ℤ≥‘𝑀) ∣ ∀ℎ ∈ (ℤ≥‘𝑙)(abs‘((𝑅‘ℎ) − (𝑅‘𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
= inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, <
) |
532 | 7, 6, 9, 459, 107, 108, 22, 461, 462, 515, 531 | ioodvbdlimc1lem1 43472 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) ⇝ (lim sup‘(𝑗 ∈
(ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))))) |
533 | 460 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ (𝐵 − (1 / 𝑗)) ∈ ℝ) → (𝑅‘𝑗) = (𝐵 − (1 / 𝑗))) |
534 | 111, 58, 533 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑅‘𝑗) = (𝐵 − (1 / 𝑗))) |
535 | 534 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐵 − (1 / 𝑗)) = (𝑅‘𝑗)) |
536 | 535 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝐵 − (1 / 𝑗))) = (𝐹‘(𝑅‘𝑗))) |
537 | 536 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗)))) |
538 | 105, 537 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗)))) |
539 | 538 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (lim sup‘𝑆) = (lim sup‘(𝑗 ∈
(ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))))) |
540 | 532, 538,
539 | 3brtr4d 5106 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⇝ (lim sup‘𝑆)) |
541 | 465 | mptex 7099 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) ∈ V |
542 | 105, 541 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ 𝑆 ∈ V |
543 | 542 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ V) |
544 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ℤ) → (𝑆‘𝑐) = (𝑆‘𝑐)) |
545 | 543, 544 | clim 15203 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ⇝ (lim sup‘𝑆) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑏 ∈ ℤ
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎)))) |
546 | 540, 545 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((lim sup‘𝑆) ∈ ℂ ∧
∀𝑎 ∈
ℝ+ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎))) |
547 | 546 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℤ ∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎)) |
548 | 547 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑎 ∈
ℝ+ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎)) |
549 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
550 | 549 | rphalfcld 12784 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ+) |
551 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑎 = (𝑥 / 2) → ((abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎 ↔ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) |
552 | 551 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑎 = (𝑥 / 2) → (((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))) |
553 | 552 | rexralbidv 3230 |
. . . . . . 7
⊢ (𝑎 = (𝑥 / 2) → (∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))) |
554 | 553 | rspccva 3560 |
. . . . . 6
⊢
((∀𝑎 ∈
ℝ+ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < 𝑎) ∧ (𝑥 / 2) ∈ ℝ+) →
∃𝑏 ∈ ℤ
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) |
555 | 548, 550,
554 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑏 ∈ ℤ
∀𝑐 ∈
(ℤ≥‘𝑏)((𝑆‘𝑐) ∈ ℂ ∧ (abs‘((𝑆‘𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) |
556 | 451, 555 | r19.29a 3218 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈
(ℤ≥‘𝑁)(abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) |
557 | 405, 556 | r19.29a 3218 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) |
558 | 557 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+
∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)) |
559 | | ioosscn 13141 |
. . . 4
⊢ (𝐴(,)𝐵) ⊆ ℂ |
560 | 559 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
561 | 454, 560,
85 | ellimc3 25043 |
. 2
⊢ (𝜑 → ((lim sup‘𝑆) ∈ (𝐹 limℂ 𝐵) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − (lim sup‘𝑆))) < 𝑥)))) |
562 | 134, 558,
561 | mpbir2and 710 |
1
⊢ (𝜑 → (lim sup‘𝑆) ∈ (𝐹 limℂ 𝐵)) |