Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc2lem Structured version   Visualization version   GIF version

Theorem ioodvbdlimc2lem 45555
Description: Limit at the upper bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc2lem.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc2lem.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc2lem.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc2lem.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
ioodvbdlimc2lem.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc2lem.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc2lem.y 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
ioodvbdlimc2lem.m 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
ioodvbdlimc2lem.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗))))
ioodvbdlimc2lem.r 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐵 − (1 / 𝑗)))
ioodvbdlimc2lem.n 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
ioodvbdlimc2lem.ch (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
Assertion
Ref Expression
ioodvbdlimc2lem (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐵))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑧,𝑦   𝐵,𝑗,𝑥,𝑧,𝑦   𝑗,𝐹,𝑥,𝑧,𝑦   𝑗,𝑀,𝑥,𝑦   𝑗,𝑁,𝑧   𝑅,𝑗,𝑥,𝑦   𝑥,𝑆,𝑗,𝑦,𝑧   𝑥,𝑌   𝜑,𝑥,𝑗,𝑧,𝑦
Allowed substitution hints:   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑅(𝑧)   𝑀(𝑧)   𝑁(𝑥,𝑦)   𝑌(𝑦,𝑧,𝑗)

Proof of Theorem ioodvbdlimc2lem
Dummy variables 𝑏 𝑘 𝑖 𝑙 𝑤 𝑚 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 12895 . . . . . 6 (ℤ𝑀) ⊆ ℤ
2 zssre 12617 . . . . . 6 ℤ ⊆ ℝ
31, 2sstri 3989 . . . . 5 (ℤ𝑀) ⊆ ℝ
43a1i 11 . . . 4 (𝜑 → (ℤ𝑀) ⊆ ℝ)
5 ioodvbdlimc2lem.m . . . . . . 7 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
6 ioodvbdlimc2lem.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
7 ioodvbdlimc2lem.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
86, 7resubcld 11692 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
9 ioodvbdlimc2lem.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
107, 6posdifd 11851 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
119, 10mpbid 231 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1211gt0ne0d 11828 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
138, 12rereccld 12092 . . . . . . . . 9 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ)
14 0red 11267 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
158, 11recgt0d 12200 . . . . . . . . . 10 (𝜑 → 0 < (1 / (𝐵𝐴)))
1614, 13, 15ltled 11412 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / (𝐵𝐴)))
17 flge0nn0 13840 . . . . . . . . 9 (((1 / (𝐵𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐵𝐴))) → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
1813, 16, 17syl2anc 582 . . . . . . . 8 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
19 peano2nn0 12564 . . . . . . . 8 ((⌊‘(1 / (𝐵𝐴))) ∈ ℕ0 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
2018, 19syl 17 . . . . . . 7 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
215, 20eqeltrid 2830 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2221nn0zd 12636 . . . . 5 (𝜑𝑀 ∈ ℤ)
23 eqid 2726 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
2423uzsup 13883 . . . . 5 (𝑀 ∈ ℤ → sup((ℤ𝑀), ℝ*, < ) = +∞)
2522, 24syl 17 . . . 4 (𝜑 → sup((ℤ𝑀), ℝ*, < ) = +∞)
26 ioodvbdlimc2lem.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2726adantr 479 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
287rexrd 11314 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
2928adantr 479 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ*)
306rexrd 11314 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3130adantr 479 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ*)
326adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
33 eluzelre 12885 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
3433adantl 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ)
35 0red 11267 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
36 0red 11267 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 0 ∈ ℝ)
37 1red 11265 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℝ)
3836, 37readdcld 11293 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (0 + 1) ∈ ℝ)
3938adantl 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ∈ ℝ)
4036ltp1d 12196 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 0 < (0 + 1))
4140adantl 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < (0 + 1))
42 eluzel2 12879 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4342zred 12718 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4443adantl 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
4513flcld 13818 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℤ)
4645zred 12718 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℝ)
47 1red 11265 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4818nn0ge0d 12587 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (⌊‘(1 / (𝐵𝐴))))
4914, 46, 47, 48leadd1dd 11878 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ ((⌊‘(1 / (𝐵𝐴))) + 1))
5049, 5breqtrrdi 5195 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ 𝑀)
5150adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑀)
52 eluzle 12887 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5352adantl 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀𝑗)
5439, 44, 34, 51, 53letrd 11421 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑗)
5535, 39, 34, 41, 54ltletrd 11424 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < 𝑗)
5655gt0ne0d 11828 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ≠ 0)
5734, 56rereccld 12092 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ)
5832, 57resubcld 11692 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) ∈ ℝ)
597adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
6021nn0red 12585 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
6114, 47readdcld 11293 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
6246, 47readdcld 11293 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ)
6314ltp1d 12196 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
6414, 61, 62, 63, 49ltletrd 11424 . . . . . . . . . . . . 13 (𝜑 → 0 < ((⌊‘(1 / (𝐵𝐴))) + 1))
6564, 5breqtrrdi 5195 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
6665gt0ne0d 11828 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6760, 66rereccld 12092 . . . . . . . . . 10 (𝜑 → (1 / 𝑀) ∈ ℝ)
6867adantr 479 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑀) ∈ ℝ)
6932, 68resubcld 11692 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑀)) ∈ ℝ)
705eqcomi 2735 . . . . . . . . . . . . 13 ((⌊‘(1 / (𝐵𝐴))) + 1) = 𝑀
7170oveq2i 7435 . . . . . . . . . . . 12 (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) = (1 / 𝑀)
7271, 67eqeltrid 2830 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) ∈ ℝ)
7313, 15elrpd 13067 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ+)
7462, 64elrpd 13067 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ+)
75 1rp 13032 . . . . . . . . . . . . . 14 1 ∈ ℝ+
7675a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
77 fllelt 13817 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) ∈ ℝ → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
7813, 77syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
7978simprd 494 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1))
8073, 74, 76, 79ltdiv2dd 44909 . . . . . . . . . . . 12 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (1 / (1 / (𝐵𝐴))))
818recnd 11292 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℂ)
8281, 12recrecd 12038 . . . . . . . . . . . 12 (𝜑 → (1 / (1 / (𝐵𝐴))) = (𝐵𝐴))
8380, 82breqtrd 5179 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (𝐵𝐴))
8472, 8, 6, 83ltsub2dd 11877 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐵𝐴)) < (𝐵 − (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))))
856recnd 11292 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
867recnd 11292 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
8785, 86nncand 11626 . . . . . . . . . 10 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
8871oveq2i 7435 . . . . . . . . . . 11 (𝐵 − (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) = (𝐵 − (1 / 𝑀))
8988a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 − (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) = (𝐵 − (1 / 𝑀)))
9084, 87, 893brtr3d 5184 . . . . . . . . 9 (𝜑𝐴 < (𝐵 − (1 / 𝑀)))
9190adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐵 − (1 / 𝑀)))
9260, 65elrpd 13067 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
9392adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ+)
9434, 55elrpd 13067 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ+)
95 1red 11265 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
96 0le1 11787 . . . . . . . . . . 11 0 ≤ 1
9796a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ≤ 1)
9893, 94, 95, 97, 53lediv2ad 13092 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ≤ (1 / 𝑀))
9957, 68, 32, 98lesub2dd 11881 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑀)) ≤ (𝐵 − (1 / 𝑗)))
10059, 69, 58, 91, 99ltletrd 11424 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐵 − (1 / 𝑗)))
10194rpreccld 13080 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ+)
10232, 101ltsubrpd 13102 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) < 𝐵)
10329, 31, 58, 100, 102eliood 45116 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵))
10427, 103ffvelcdmd 7099 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐵 − (1 / 𝑗))) ∈ ℝ)
105 ioodvbdlimc2lem.s . . . . 5 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗))))
106104, 105fmptd 7128 . . . 4 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
107 ioodvbdlimc2lem.dmdv . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
108 ioodvbdlimc2lem.dvbd . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
1097, 6, 9, 26, 107, 108dvbdfbdioo 45551 . . . . 5 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
11060adantr 479 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → 𝑀 ∈ ℝ)
111 simpr 483 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
112105fvmpt2 7020 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐹‘(𝐵 − (1 / 𝑗))) ∈ ℝ) → (𝑆𝑗) = (𝐹‘(𝐵 − (1 / 𝑗))))
113111, 104, 112syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑆𝑗) = (𝐹‘(𝐵 − (1 / 𝑗))))
114113fveq2d 6905 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))))
115114adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))))
116 simplr 767 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
117103adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵))
118 2fveq3 6906 . . . . . . . . . . . . . 14 (𝑥 = (𝐵 − (1 / 𝑗)) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))))
119118breq1d 5163 . . . . . . . . . . . . 13 (𝑥 = (𝐵 − (1 / 𝑗)) → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏))
120119rspccva 3607 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ∧ (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏)
121116, 117, 120syl2anc 582 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝐵 − (1 / 𝑗)))) ≤ 𝑏)
122115, 121eqbrtrd 5175 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) ≤ 𝑏)
123122a1d 25 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
124123ralrimiva 3136 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
125 breq1 5156 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘𝑗𝑀𝑗))
126125imbi1d 340 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
127126ralbidv 3168 . . . . . . . . 9 (𝑘 = 𝑀 → (∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
128127rspcev 3608 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
129110, 124, 128syl2anc 582 . . . . . . 7 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
130129ex 411 . . . . . 6 (𝜑 → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
131130reximdv 3160 . . . . 5 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
132109, 131mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
1334, 25, 106, 132limsupre 45262 . . 3 (𝜑 → (lim sup‘𝑆) ∈ ℝ)
134133recnd 11292 . 2 (𝜑 → (lim sup‘𝑆) ∈ ℂ)
135 eluzelre 12885 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
136135adantl 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
137 0red 11267 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
13845peano2zd 12721 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℤ)
1395, 138eqeltrid 2830 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
140139adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
141140zred 12718 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℝ)
142141adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀 ∈ ℝ)
14365ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑀)
144 ioodvbdlimc2lem.n . . . . . . . . . . . . . 14 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
145 ioodvbdlimc2lem.y . . . . . . . . . . . . . . . . . . . 20 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
146 ioomidp 45132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
1477, 6, 9, 146syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
148 ne0i 4337 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
149147, 148syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
150 ioossre 13439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ ℝ
151150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
152 dvfre 25974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
15326, 151, 152syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
154107feq2d 6714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
155153, 154mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
156155ffvelcdmda 7098 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
157156recnd 11292 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
158157abscld 15441 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
159 eqid 2726 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
160 eqid 2726 . . . . . . . . . . . . . . . . . . . . . 22 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
161149, 158, 108, 159, 160suprnmpt 44781 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
162161simpld 493 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
163145, 162eqeltrid 2830 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ∈ ℝ)
164163adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑌 ∈ ℝ)
165 rpre 13036 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
166165rehalfcld 12511 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
167166adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
168165recnd 11292 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
169168adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
170 2cnd 12342 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
171 rpne0 13044 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ≠ 0)
172171adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
173 2ne0 12368 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
174173a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
175169, 170, 172, 174divne0d 12057 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ≠ 0)
176164, 167, 175redivcld 12093 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
177176flcld 13818 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
178177peano2zd 12721 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
179178, 140ifcld 4579 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
180144, 179eqeltrid 2830 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
181180zred 12718 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℝ)
182181adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
183178zred 12718 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
184 max1 13218 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
185141, 183, 184syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
186185, 144breqtrrdi 5195 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑁)
187186adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑁)
188 eluzle 12887 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑁) → 𝑁𝑗)
189188adantl 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁𝑗)
190142, 182, 136, 187, 189letrd 11421 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑗)
191137, 142, 136, 143, 190ltletrd 11424 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑗)
192191gt0ne0d 11828 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
193136, 192rereccld 12092 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ)
194136, 191recgt0d 12200 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < (1 / 𝑗))
195193, 194elrpd 13067 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ+)
196195adantr 479 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → (1 / 𝑗) ∈ ℝ+)
197 ioodvbdlimc2lem.ch . . . . . . . . 9 (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
198197biimpi 215 . . . . . . . . . . . . . . . . 17 (𝜒 → (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
199 simp-5l 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → 𝜑)
200198, 199syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
201200, 26syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:(𝐴(,)𝐵)⟶ℝ)
202198simplrd 768 . . . . . . . . . . . . . . 15 (𝜒𝑧 ∈ (𝐴(,)𝐵))
203201, 202ffvelcdmd 7099 . . . . . . . . . . . . . 14 (𝜒 → (𝐹𝑧) ∈ ℝ)
204203recnd 11292 . . . . . . . . . . . . 13 (𝜒 → (𝐹𝑧) ∈ ℂ)
205200, 106syl 17 . . . . . . . . . . . . . . 15 (𝜒𝑆:(ℤ𝑀)⟶ℝ)
206 simp-5r 784 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → 𝑥 ∈ ℝ+)
207198, 206syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑥 ∈ ℝ+)
208 eluz2 12880 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
209140, 180, 186, 208syl3anbrc 1340 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑀))
210200, 207, 209syl2anc 582 . . . . . . . . . . . . . . . . 17 (𝜒𝑁 ∈ (ℤ𝑀))
211 uzss 12897 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
212210, 211syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → (ℤ𝑁) ⊆ (ℤ𝑀))
213 simp-4r 782 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → 𝑗 ∈ (ℤ𝑁))
214198, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑗 ∈ (ℤ𝑁))
215212, 214sseldd 3980 . . . . . . . . . . . . . . 15 (𝜒𝑗 ∈ (ℤ𝑀))
216205, 215ffvelcdmd 7099 . . . . . . . . . . . . . 14 (𝜒 → (𝑆𝑗) ∈ ℝ)
217216recnd 11292 . . . . . . . . . . . . 13 (𝜒 → (𝑆𝑗) ∈ ℂ)
218200, 134syl 17 . . . . . . . . . . . . 13 (𝜒 → (lim sup‘𝑆) ∈ ℂ)
219204, 217, 218npncand 11645 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) = ((𝐹𝑧) − (lim sup‘𝑆)))
220219eqcomd 2732 . . . . . . . . . . 11 (𝜒 → ((𝐹𝑧) − (lim sup‘𝑆)) = (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))))
221220fveq2d 6905 . . . . . . . . . 10 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) = (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))))
222203, 216resubcld 11692 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℝ)
223200, 133syl 17 . . . . . . . . . . . . . . 15 (𝜒 → (lim sup‘𝑆) ∈ ℝ)
224216, 223resubcld 11692 . . . . . . . . . . . . . 14 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℝ)
225222, 224readdcld 11293 . . . . . . . . . . . . 13 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
226225recnd 11292 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℂ)
227226abscld 15441 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
228222recnd 11292 . . . . . . . . . . . . 13 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℂ)
229228abscld 15441 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ∈ ℝ)
230224recnd 11292 . . . . . . . . . . . . 13 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℂ)
231230abscld 15441 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
232229, 231readdcld 11293 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
233207rpred 13070 . . . . . . . . . . 11 (𝜒𝑥 ∈ ℝ)
234228, 230abstrid 15461 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ≤ ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))))
235233rehalfcld 12511 . . . . . . . . . . . . 13 (𝜒 → (𝑥 / 2) ∈ ℝ)
236200, 215, 113syl2anc 582 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑆𝑗) = (𝐹‘(𝐵 − (1 / 𝑗))))
237236oveq2d 7440 . . . . . . . . . . . . . . 15 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) = ((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗)))))
238237fveq2d 6905 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) = (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))))
239238, 229eqeltrrd 2827 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ∈ ℝ)
240200, 163syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
241150, 202sselid 3977 . . . . . . . . . . . . . . . . 17 (𝜒𝑧 ∈ ℝ)
242200, 215, 58syl2anc 582 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝐵 − (1 / 𝑗)) ∈ ℝ)
243241, 242resubcld 11692 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) ∈ ℝ)
244240, 243remulcld 11294 . . . . . . . . . . . . . . 15 (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ∈ ℝ)
245200, 7syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝐴 ∈ ℝ)
246200, 6syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝐵 ∈ ℝ)
247200, 107syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
248161simprd 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
249145breq2i 5161 . . . . . . . . . . . . . . . . . . . . 21 ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
250249ralbii 3083 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
251248, 250sylibr 233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
252200, 251syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
253 2fveq3 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑤)) = (abs‘((ℝ D 𝐹)‘𝑥)))
254253breq1d 5163 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌))
255254cbvralvw 3225 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
256252, 255sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜒 → ∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌)
257200, 215, 103syl2anc 582 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝐵 − (1 / 𝑗)) ∈ (𝐴(,)𝐵))
258242rexrd 11314 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐵 − (1 / 𝑗)) ∈ ℝ*)
259200, 30syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐵 ∈ ℝ*)
2603, 215sselid 3977 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑗 ∈ ℝ)
261200, 215, 56syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑗 ≠ 0)
262260, 261rereccld 12092 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (1 / 𝑗) ∈ ℝ)
263246, 241resubcld 11692 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝐵𝑧) ∈ ℝ)
264241, 246resubcld 11692 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧𝐵) ∈ ℝ)
265264recnd 11292 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐵) ∈ ℂ)
266265abscld 15441 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (abs‘(𝑧𝐵)) ∈ ℝ)
267263leabsd 15419 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝐵𝑧) ≤ (abs‘(𝐵𝑧)))
268200, 85syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝐵 ∈ ℂ)
269241recnd 11292 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑧 ∈ ℂ)
270268, 269abssubd 15458 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝐵𝑧)) = (abs‘(𝑧𝐵)))
271267, 270breqtrd 5179 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝐵𝑧) ≤ (abs‘(𝑧𝐵)))
272198simprd 494 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (abs‘(𝑧𝐵)) < (1 / 𝑗))
273263, 266, 262, 271, 272lelttrd 11422 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐵𝑧) < (1 / 𝑗))
274246, 241, 262, 273ltsub23d 11869 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐵 − (1 / 𝑗)) < 𝑧)
275200, 28syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐴 ∈ ℝ*)
276 iooltub 45128 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
277275, 259, 202, 276syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (𝜒𝑧 < 𝐵)
278258, 259, 241, 274, 277eliood 45116 . . . . . . . . . . . . . . . . 17 (𝜒𝑧 ∈ ((𝐵 − (1 / 𝑗))(,)𝐵))
279245, 246, 201, 247, 240, 256, 257, 278dvbdfbdioolem1 45549 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ∧ (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝐵𝐴))))
280279simpld 493 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))))
281200, 215, 57syl2anc 582 . . . . . . . . . . . . . . . . 17 (𝜒 → (1 / 𝑗) ∈ ℝ)
282240, 281remulcld 11294 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · (1 / 𝑗)) ∈ ℝ)
283155, 147ffvelcdmd 7099 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
284283recnd 11292 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
285284abscld 15441 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
286284absge0d 15449 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
287 2fveq3 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
288145eqcomi 2735 . . . . . . . . . . . . . . . . . . . . . . 23 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌
289288a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌)
290287, 289breq12d 5166 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌))
291290rspcva 3606 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
292147, 248, 291syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
29314, 285, 163, 286, 292letrd 11421 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
294200, 293syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → 0 ≤ 𝑌)
295281recnd 11292 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (1 / 𝑗) ∈ ℂ)
296 sub31 44905 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (1 / 𝑗) ∈ ℂ) → (𝑧 − (𝐵 − (1 / 𝑗))) = ((1 / 𝑗) − (𝐵𝑧)))
297269, 268, 295, 296syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) = ((1 / 𝑗) − (𝐵𝑧)))
298241, 246posdifd 11851 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧 < 𝐵 ↔ 0 < (𝐵𝑧)))
299277, 298mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → 0 < (𝐵𝑧))
300263, 299elrpd 13067 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝐵𝑧) ∈ ℝ+)
301281, 300ltsubrpd 13102 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((1 / 𝑗) − (𝐵𝑧)) < (1 / 𝑗))
302297, 301eqbrtrd 5175 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) < (1 / 𝑗))
303243, 281, 302ltled 11412 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑧 − (𝐵 − (1 / 𝑗))) ≤ (1 / 𝑗))
304243, 281, 240, 294, 303lemul2ad 12206 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ≤ (𝑌 · (1 / 𝑗)))
305282adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
306235adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑥 / 2) ∈ ℝ)
307 oveq1 7431 . . . . . . . . . . . . . . . . . . . 20 (𝑌 = 0 → (𝑌 · (1 / 𝑗)) = (0 · (1 / 𝑗)))
308295mul02d 11462 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (0 · (1 / 𝑗)) = 0)
309307, 308sylan9eqr 2788 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) = 0)
310207rphalfcld 13082 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑥 / 2) ∈ ℝ+)
311310rpgt0d 13073 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 < (𝑥 / 2))
312311adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → 0 < (𝑥 / 2))
313309, 312eqbrtrd 5175 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) < (𝑥 / 2))
314305, 306, 313ltled 11412 . . . . . . . . . . . . . . . . 17 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
315240adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ∈ ℝ)
316294adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 ≤ 𝑌)
317 neqne 2938 . . . . . . . . . . . . . . . . . . . 20 𝑌 = 0 → 𝑌 ≠ 0)
318317adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
319315, 316, 318ne0gt0d 11401 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 < 𝑌)
320282adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
3213, 210sselid 3977 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁 ∈ ℝ)
322 0red 11267 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 ∈ ℝ)
323200, 207, 141syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑀 ∈ ℝ)
324200, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 < 𝑀)
325200, 207, 186syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑀𝑁)
326322, 323, 321, 324, 325ltletrd 11424 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 0 < 𝑁)
327326gt0ne0d 11828 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁 ≠ 0)
328321, 327rereccld 12092 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑁) ∈ ℝ)
329240, 328remulcld 11294 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑌 · (1 / 𝑁)) ∈ ℝ)
330329adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ∈ ℝ)
331235adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℝ)
332281adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ∈ ℝ)
333328adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ∈ ℝ)
334240adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℝ)
335294adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 𝑌)
336321, 326elrpd 13067 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁 ∈ ℝ+)
337200, 215, 94syl2anc 582 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ∈ ℝ+)
338 1red 11265 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → 1 ∈ ℝ)
33996a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → 0 ≤ 1)
340214, 188syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑁𝑗)
341336, 337, 338, 339, 340lediv2ad 13092 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ≤ (1 / 𝑁))
342341adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ≤ (1 / 𝑁))
343332, 333, 334, 335, 342lemul2ad 12206 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑌 · (1 / 𝑁)))
344233recnd 11292 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑥 ∈ ℂ)
345 2cnd 12342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → 2 ∈ ℂ)
346207rpne0d 13075 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑥 ≠ 0)
347173a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → 2 ≠ 0)
348344, 345, 346, 347divne0d 12057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑥 / 2) ≠ 0)
349240, 235, 348redivcld 12093 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) ∈ ℝ)
350349adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
351 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < 𝑌)
352311adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑥 / 2))
353334, 331, 351, 352divgt0d 12201 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑌 / (𝑥 / 2)))
354350, 353elrpd 13067 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ+)
355354rprecred 13081 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / (𝑌 / (𝑥 / 2))) ∈ ℝ)
356336adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 𝑁 ∈ ℝ+)
357 1red 11265 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 1 ∈ ℝ)
35896a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 1)
359349flcld 13818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
360359peano2zd 12721 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
361360zred 12718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
362200, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒𝑀 ∈ ℤ)
363360, 362ifcld 4579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
364144, 363eqeltrid 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑁 ∈ ℤ)
365364zred 12718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑁 ∈ ℝ)
366 flltp1 13820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑌 / (𝑥 / 2)) ∈ ℝ → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
367349, 366syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
368200, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑀 ∈ ℝ)
369 max2 13220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
370368, 361, 369syl2anc 582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
371370, 144breqtrrdi 5195 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ 𝑁)
372349, 361, 365, 367, 371ltletrd 11424 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) < 𝑁)
373349, 321, 372ltled 11412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
374373adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
375354, 356, 357, 358, 374lediv2ad 13092 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ≤ (1 / (𝑌 / (𝑥 / 2))))
376333, 355, 334, 335, 375lemul2ad 12206 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
377334recnd 11292 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℂ)
378350recnd 11292 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℂ)
379353gt0ne0d 11828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≠ 0)
380377, 378, 379divrecd 12044 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
381331recnd 11292 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℂ)
382351gt0ne0d 11828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ≠ 0)
383348adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ≠ 0)
384377, 381, 382, 383ddcand 12061 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑥 / 2))
385380, 384eqtr3d 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / (𝑌 / (𝑥 / 2)))) = (𝑥 / 2))
386376, 385breqtrd 5179 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑥 / 2))
387320, 330, 331, 343, 386letrd 11421 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
388319, 387syldan 589 . . . . . . . . . . . . . . . . 17 ((𝜒 ∧ ¬ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
389314, 388pm2.61dan 811 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
390244, 282, 235, 304, 389letrd 11421 . . . . . . . . . . . . . . 15 (𝜒 → (𝑌 · (𝑧 − (𝐵 − (1 / 𝑗)))) ≤ (𝑥 / 2))
391239, 244, 235, 280, 390letrd 11421 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝐹‘(𝐵 − (1 / 𝑗))))) ≤ (𝑥 / 2))
392238, 391eqbrtrd 5175 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ≤ (𝑥 / 2))
393 simpllr 774 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
394198, 393syl 17 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
395229, 231, 235, 235, 392, 394leltaddd 11886 . . . . . . . . . . . 12 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < ((𝑥 / 2) + (𝑥 / 2)))
3963442halvesd 12510 . . . . . . . . . . . 12 (𝜒 → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
397395, 396breqtrd 5179 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
398227, 232, 233, 234, 397lelttrd 11422 . . . . . . . . . 10 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
399221, 398eqbrtrd 5175 . . . . . . . . 9 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
400197, 399sylbir 234 . . . . . . . 8 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
401400adantrl 714 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗))) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
402401ex 411 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
403402ralrimiva 3136 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
404 brimralrspcev 5214 . . . . 5 (((1 / 𝑗) ∈ ℝ+ ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
405196, 403, 404syl2anc 582 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
406 simpr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑏𝑁)
407406iftrued 4541 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑁)
408 uzid 12889 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
409180, 408syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑁))
410409adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑁 ∈ (ℤ𝑁))
411407, 410eqeltrd 2826 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
412411adantlr 713 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
413 iffalse 4542 . . . . . . . . . 10 𝑏𝑁 → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
414413adantl 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
415180ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℤ)
416 simplr 767 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℤ)
417415zred 12718 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℝ)
418416zred 12718 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℝ)
419 simpr 483 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → ¬ 𝑏𝑁)
420417, 418ltnled 11411 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → (𝑁 < 𝑏 ↔ ¬ 𝑏𝑁))
421419, 420mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 < 𝑏)
422417, 418, 421ltled 11412 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁𝑏)
423 eluz2 12880 . . . . . . . . . 10 (𝑏 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁𝑏))
424415, 416, 422, 423syl3anbrc 1340 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ (ℤ𝑁))
425414, 424eqeltrd 2826 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
426412, 425pm2.61dan 811 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
427426adantr 479 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
428 simpr 483 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
429 simpr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
430180adantr 479 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
431430, 429ifcld 4579 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ)
432429zred 12718 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
433430zred 12718 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℝ)
434 max1 13218 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
435432, 433, 434syl2anc 582 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
436 eluz2 12880 . . . . . . . . . 10 (if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ ∧ 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏)))
437429, 431, 435, 436syl3anbrc 1340 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
438437adantr 479 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
439 fveq2 6901 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑐) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
440439eleq1d 2811 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((𝑆𝑐) ∈ ℂ ↔ (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ))
441439fvoveq1d 7446 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑐) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
442441breq1d 5163 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
443440, 442anbi12d 630 . . . . . . . . 9 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ↔ ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))))
444443rspccva 3607 . . . . . . . 8 ((∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏)) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
445428, 438, 444syl2anc 582 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
446445simprd 494 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))
447 fveq2 6901 . . . . . . . . 9 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑗) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
448447fvoveq1d 7446 . . . . . . . 8 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
449448breq1d 5163 . . . . . . 7 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
450449rspcev 3608 . . . . . 6 ((if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁) ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
451427, 446, 450syl2anc 582 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
452 ax-resscn 11215 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
453452a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
45426, 453fssd 6745 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
455 dvcn 25942 . . . . . . . . . . . . . 14 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
456453, 454, 151, 107, 455syl31anc 1370 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
457 cncfcdm 24909 . . . . . . . . . . . . 13 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
458453, 456, 457syl2anc 582 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
45926, 458mpbird 256 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
460 ioodvbdlimc2lem.r . . . . . . . . . . . 12 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐵 − (1 / 𝑗)))
461103, 460fmptd 7128 . . . . . . . . . . 11 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
462 eqid 2726 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
463 climrel 15494 . . . . . . . . . . . . 13 Rel ⇝
464463a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ⇝ )
465 fvex 6914 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ∈ V
466465mptex 7240 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) ∈ V
467466a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) ∈ V)
468 eqidd 2727 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐵))
469 eqidd 2727 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑚) → 𝐵 = 𝐵)
470 simpr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
4716adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
472468, 469, 470, 471fvmptd 7016 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑚) = 𝐵)
47323, 22, 467, 85, 472climconst 15545 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) ⇝ 𝐵)
474465mptex 7240 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ (𝐵 − (1 / 𝑗))) ∈ V
475460, 474eqeltri 2822 . . . . . . . . . . . . . . 15 𝑅 ∈ V
476475a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ V)
477 1cnd 11259 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
478 elnnnn0b 12568 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0 ∧ 0 < 𝑀))
47921, 65, 478sylanbrc 581 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
480 divcnvg 45248 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
481477, 479, 480syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
482 eqidd 2727 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐵) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐵))
483 eqidd 2727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → 𝐵 = 𝐵)
484 simpr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
4856adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
486482, 483, 484, 485fvmptd 7016 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) = 𝐵)
487486, 485eqeltrd 2826 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) ∈ ℝ)
488487recnd 11292 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) ∈ ℂ)
489 eqidd 2727 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) = (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)))
490 oveq2 7432 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (1 / 𝑗) = (1 / 𝑖))
491490adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → (1 / 𝑗) = (1 / 𝑖))
4923, 484sselid 3977 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
493 0red 11267 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
49460adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
49565adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑀)
496 eluzle 12887 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
497496adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
498493, 494, 492, 495, 497ltletrd 11424 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑖)
499498gt0ne0d 11828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≠ 0)
500492, 499rereccld 12092 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℝ)
501489, 491, 484, 500fvmptd 7016 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) = (1 / 𝑖))
502492recnd 11292 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℂ)
503502, 499reccld 12034 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℂ)
504501, 503eqeltrd 2826 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) ∈ ℂ)
505490oveq2d 7440 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (𝐵 − (1 / 𝑗)) = (𝐵 − (1 / 𝑖)))
506 ovex 7457 . . . . . . . . . . . . . . . . 17 (𝐵 − (1 / 𝑖)) ∈ V
507505, 460, 506fvmpt 7009 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑀) → (𝑅𝑖) = (𝐵 − (1 / 𝑖)))
508507adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (𝐵 − (1 / 𝑖)))
509486, 501oveq12d 7442 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) − ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)) = (𝐵 − (1 / 𝑖)))
510508, 509eqtr4d 2769 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (((𝑗 ∈ (ℤ𝑀) ↦ 𝐵)‘𝑖) − ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)))
51123, 22, 473, 476, 481, 488, 504, 510climsub 15636 . . . . . . . . . . . . 13 (𝜑𝑅 ⇝ (𝐵 − 0))
51285subid1d 11610 . . . . . . . . . . . . 13 (𝜑 → (𝐵 − 0) = 𝐵)
513511, 512breqtrd 5179 . . . . . . . . . . . 12 (𝜑𝑅𝐵)
514 releldm 5950 . . . . . . . . . . . 12 ((Rel ⇝ ∧ 𝑅𝐵) → 𝑅 ∈ dom ⇝ )
515464, 513, 514syl2anc 582 . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
516 fveq2 6901 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
517 fveq2 6901 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → (𝑅𝑙) = (𝑅𝑘))
518517oveq2d 7440 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑘 → ((𝑅) − (𝑅𝑙)) = ((𝑅) − (𝑅𝑘)))
519518fveq2d 6905 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (abs‘((𝑅) − (𝑅𝑙))) = (abs‘((𝑅) − (𝑅𝑘))))
520519breq1d 5163 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → ((abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
521516, 520raleqbidv 3330 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
522521cbvrabv 3430 . . . . . . . . . . . . 13 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
523 fveq2 6901 . . . . . . . . . . . . . . . . . 18 ( = 𝑖 → (𝑅) = (𝑅𝑖))
524523fvoveq1d 7446 . . . . . . . . . . . . . . . . 17 ( = 𝑖 → (abs‘((𝑅) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝑘))))
525524breq1d 5163 . . . . . . . . . . . . . . . 16 ( = 𝑖 → ((abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
526525cbvralvw 3225 . . . . . . . . . . . . . . 15 (∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
527526rgenw 3055 . . . . . . . . . . . . . 14 𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
528 rabbi 3450 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) ↔ {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
529527, 528mpbi 229 . . . . . . . . . . . . 13 {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
530522, 529eqtri 2754 . . . . . . . . . . . 12 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
531530infeq1i 9521 . . . . . . . . . . 11 inf({𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
5327, 6, 9, 459, 107, 108, 22, 461, 462, 515, 531ioodvbdlimc1lem1 45552 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) ⇝ (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
533460fvmpt2 7020 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐵 − (1 / 𝑗)) ∈ ℝ) → (𝑅𝑗) = (𝐵 − (1 / 𝑗)))
534111, 58, 533syl2anc 582 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) = (𝐵 − (1 / 𝑗)))
535534eqcomd 2732 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐵 − (1 / 𝑗)) = (𝑅𝑗))
536535fveq2d 6905 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐵 − (1 / 𝑗))) = (𝐹‘(𝑅𝑗)))
537536mpteq2dva 5253 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
538105, 537eqtrid 2778 . . . . . . . . . 10 (𝜑𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
539538fveq2d 6905 . . . . . . . . . 10 (𝜑 → (lim sup‘𝑆) = (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
540532, 538, 5393brtr4d 5185 . . . . . . . . 9 (𝜑𝑆 ⇝ (lim sup‘𝑆))
541465mptex 7240 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) ∈ V
542105, 541eqeltri 2822 . . . . . . . . . . 11 𝑆 ∈ V
543542a1i 11 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
544 eqidd 2727 . . . . . . . . . 10 ((𝜑𝑐 ∈ ℤ) → (𝑆𝑐) = (𝑆𝑐))
545543, 544clim 15496 . . . . . . . . 9 (𝜑 → (𝑆 ⇝ (lim sup‘𝑆) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))))
546540, 545mpbid 231 . . . . . . . 8 (𝜑 → ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎)))
547546simprd 494 . . . . . . 7 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
548547adantr 479 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
549 simpr 483 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
550549rphalfcld 13082 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
551 breq2 5157 . . . . . . . . 9 (𝑎 = (𝑥 / 2) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎 ↔ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
552551anbi2d 628 . . . . . . . 8 (𝑎 = (𝑥 / 2) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
553552rexralbidv 3211 . . . . . . 7 (𝑎 = (𝑥 / 2) → (∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
554553rspccva 3607 . . . . . 6 ((∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ∧ (𝑥 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
555548, 550, 554syl2anc 582 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
556451, 555r19.29a 3152 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
557405, 556r19.29a 3152 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
558557ralrimiva 3136 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
559 ioosscn 13440 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
560559a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
561454, 560, 85ellimc3 25899 . 2 (𝜑 → ((lim sup‘𝑆) ∈ (𝐹 lim 𝐵) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))))
562134, 558, 561mpbir2and 711 1 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3947  c0 4325  ifcif 4533   class class class wbr 5153  cmpt 5236  dom cdm 5682  ran crn 5683  Rel wrel 5687  wf 6550  cfv 6554  (class class class)co 7424  supcsup 9483  infcinf 9484  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163  +∞cpnf 11295  *cxr 11297   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  2c2 12319  0cn0 12524  cz 12610  cuz 12874  +crp 13028  (,)cioo 13378  cfl 13810  abscabs 15239  lim supclsp 15472  cli 15486  cnccncf 24887   lim climc 25882   D cdv 25883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-cmp 23382  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887
This theorem is referenced by:  ioodvbdlimc2  45556
  Copyright terms: Public domain W3C validator