Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem2 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem2 43427
Description: Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem2.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem2.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem2.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
ioodvbdlimc1lem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem2.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem2.y 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
ioodvbdlimc1lem2.m 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
ioodvbdlimc1lem2.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))
ioodvbdlimc1lem2.r 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗)))
ioodvbdlimc1lem2.n 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
ioodvbdlimc1lem2.ch (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
Assertion
Ref Expression
ioodvbdlimc1lem2 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐴))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑧,𝑦   𝐵,𝑗,𝑥,𝑧,𝑦   𝑗,𝐹,𝑥,𝑧,𝑦   𝑗,𝑀,𝑥,𝑦   𝑗,𝑁,𝑧   𝑅,𝑗,𝑥,𝑦   𝑥,𝑆,𝑗,𝑦,𝑧   𝑥,𝑌   𝜑,𝑥,𝑗,𝑧,𝑦
Allowed substitution hints:   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑅(𝑧)   𝑀(𝑧)   𝑁(𝑥,𝑦)   𝑌(𝑦,𝑧,𝑗)

Proof of Theorem ioodvbdlimc1lem2
Dummy variables 𝑏 𝑘 𝑖 𝑙 𝑚 𝑤 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 12585 . . . . . 6 (ℤ𝑀) ⊆ ℤ
2 zssre 12309 . . . . . 6 ℤ ⊆ ℝ
31, 2sstri 3934 . . . . 5 (ℤ𝑀) ⊆ ℝ
43a1i 11 . . . 4 (𝜑 → (ℤ𝑀) ⊆ ℝ)
5 ioodvbdlimc1lem2.m . . . . . . 7 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
6 ioodvbdlimc1lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
7 ioodvbdlimc1lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
86, 7resubcld 11386 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
9 ioodvbdlimc1lem2.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
107, 6posdifd 11545 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
119, 10mpbid 231 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1211gt0ne0d 11522 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
138, 12rereccld 11785 . . . . . . . . 9 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ)
14 0red 10962 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
158, 11recgt0d 11892 . . . . . . . . . 10 (𝜑 → 0 < (1 / (𝐵𝐴)))
1614, 13, 15ltled 11106 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / (𝐵𝐴)))
17 flge0nn0 13521 . . . . . . . . 9 (((1 / (𝐵𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐵𝐴))) → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
1813, 16, 17syl2anc 583 . . . . . . . 8 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
19 peano2nn0 12256 . . . . . . . 8 ((⌊‘(1 / (𝐵𝐴))) ∈ ℕ0 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
2018, 19syl 17 . . . . . . 7 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
215, 20eqeltrid 2844 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2221nn0zd 12406 . . . . 5 (𝜑𝑀 ∈ ℤ)
23 eqid 2739 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
2423uzsup 13564 . . . . 5 (𝑀 ∈ ℤ → sup((ℤ𝑀), ℝ*, < ) = +∞)
2522, 24syl 17 . . . 4 (𝜑 → sup((ℤ𝑀), ℝ*, < ) = +∞)
26 ioodvbdlimc1lem2.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2726adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
287rexrd 11009 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ*)
306rexrd 11009 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3130adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ*)
327adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
33 eluzelre 12575 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
3433adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ)
35 0red 10962 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
36 0red 10962 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 0 ∈ ℝ)
37 1red 10960 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℝ)
3836, 37readdcld 10988 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (0 + 1) ∈ ℝ)
3938adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ∈ ℝ)
4036ltp1d 11888 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 0 < (0 + 1))
4140adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < (0 + 1))
42 eluzel2 12569 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4342zred 12408 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4443adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
4513flcld 13499 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℤ)
4645zred 12408 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℝ)
47 1red 10960 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4818nn0ge0d 12279 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (⌊‘(1 / (𝐵𝐴))))
4914, 46, 47, 48leadd1dd 11572 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ ((⌊‘(1 / (𝐵𝐴))) + 1))
5049, 5breqtrrdi 5120 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ 𝑀)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑀)
52 eluzle 12577 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀𝑗)
5439, 44, 34, 51, 53letrd 11115 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑗)
5535, 39, 34, 41, 54ltletrd 11118 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < 𝑗)
5655gt0ne0d 11522 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ≠ 0)
5734, 56rereccld 11785 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ)
5832, 57readdcld 10988 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ ℝ)
5934, 55elrpd 12751 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ+)
6059rpreccld 12764 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ+)
6132, 60ltaddrpd 12787 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐴 + (1 / 𝑗)))
6221nn0red 12277 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
6314, 47readdcld 10988 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
6446, 47readdcld 10988 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ)
6514ltp1d 11888 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
6614, 63, 64, 65, 49ltletrd 11118 . . . . . . . . . . . . 13 (𝜑 → 0 < ((⌊‘(1 / (𝐵𝐴))) + 1))
6766, 5breqtrrdi 5120 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
6867gt0ne0d 11522 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6962, 68rereccld 11785 . . . . . . . . . 10 (𝜑 → (1 / 𝑀) ∈ ℝ)
7069adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑀) ∈ ℝ)
7132, 70readdcld 10988 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑀)) ∈ ℝ)
726adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
7362, 67elrpd 12751 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ+)
75 1red 10960 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
76 0le1 11481 . . . . . . . . . . 11 0 ≤ 1
7776a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ≤ 1)
7874, 59, 75, 77, 53lediv2ad 12776 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ≤ (1 / 𝑀))
7957, 70, 32, 78leadd2dd 11573 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ≤ (𝐴 + (1 / 𝑀)))
805eqcomi 2748 . . . . . . . . . . . . 13 ((⌊‘(1 / (𝐵𝐴))) + 1) = 𝑀
8180oveq2i 7279 . . . . . . . . . . . 12 (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) = (1 / 𝑀)
8281, 69eqeltrid 2844 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) ∈ ℝ)
8313, 15elrpd 12751 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ+)
8464, 66elrpd 12751 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ+)
85 1rp 12716 . . . . . . . . . . . . . 14 1 ∈ ℝ+
8685a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
87 fllelt 13498 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) ∈ ℝ → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
8988simprd 495 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1))
9083, 84, 86, 89ltdiv2dd 42787 . . . . . . . . . . . 12 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (1 / (1 / (𝐵𝐴))))
918recnd 10987 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℂ)
9291, 12recrecd 11731 . . . . . . . . . . . 12 (𝜑 → (1 / (1 / (𝐵𝐴))) = (𝐵𝐴))
9390, 92breqtrd 5104 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (𝐵𝐴))
9482, 8, 7, 93ltadd2dd 11117 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) < (𝐴 + (𝐵𝐴)))
955oveq2i 7279 . . . . . . . . . . . 12 (1 / 𝑀) = (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))
9695oveq2i 7279 . . . . . . . . . . 11 (𝐴 + (1 / 𝑀)) = (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)))
9796a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 𝑀)) = (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))))
987recnd 10987 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
996recnd 10987 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
10098, 99pncan3d 11318 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
101100eqcomd 2745 . . . . . . . . . 10 (𝜑𝐵 = (𝐴 + (𝐵𝐴)))
10294, 97, 1013brtr4d 5110 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝑀)) < 𝐵)
103102adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑀)) < 𝐵)
10458, 71, 72, 79, 103lelttrd 11116 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) < 𝐵)
10529, 31, 58, 61, 104eliood 42990 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵))
10627, 105ffvelrnd 6956 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ)
107 ioodvbdlimc1lem2.s . . . . 5 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))
108106, 107fmptd 6982 . . . 4 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
109 ioodvbdlimc1lem2.dmdv . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
110 ioodvbdlimc1lem2.dvbd . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
1117, 6, 9, 26, 109, 110dvbdfbdioo 43425 . . . . 5 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
11262adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → 𝑀 ∈ ℝ)
113 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
114107fvmpt2 6880 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ) → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
115113, 106, 114syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
116115fveq2d 6772 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
117116adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
118 simplr 765 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
119105adantlr 711 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵))
120 2fveq3 6773 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 + (1 / 𝑗)) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
121120breq1d 5088 . . . . . . . . . . . . 13 (𝑥 = (𝐴 + (1 / 𝑗)) → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏))
122121rspccva 3559 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ∧ (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏)
123118, 119, 122syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏)
124117, 123eqbrtrd 5100 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) ≤ 𝑏)
125124a1d 25 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
126125ralrimiva 3109 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
127 breq1 5081 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘𝑗𝑀𝑗))
128127imbi1d 341 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
129128ralbidv 3122 . . . . . . . . 9 (𝑘 = 𝑀 → (∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
130129rspcev 3560 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
131112, 126, 130syl2anc 583 . . . . . . 7 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
132131ex 412 . . . . . 6 (𝜑 → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
133132reximdv 3203 . . . . 5 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
134111, 133mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
1354, 25, 108, 134limsupre 43136 . . 3 (𝜑 → (lim sup‘𝑆) ∈ ℝ)
136135recnd 10987 . 2 (𝜑 → (lim sup‘𝑆) ∈ ℂ)
137 eluzelre 12575 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
138137adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
139 0red 10962 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
14045peano2zd 12411 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℤ)
1415, 140eqeltrid 2844 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
142141adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
143142zred 12408 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℝ)
144143adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀 ∈ ℝ)
14567ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑀)
146 ioodvbdlimc1lem2.n . . . . . . . . . . . . . 14 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
147 ioodvbdlimc1lem2.y . . . . . . . . . . . . . . . . . . . 20 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
148 ioomidp 43006 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
1497, 6, 9, 148syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
150 ne0i 4273 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
151149, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
152 ioossre 13122 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ ℝ
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
154 dvfre 25096 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
15526, 153, 154syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
156109feq2d 6582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
157155, 156mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
158157ffvelrnda 6955 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
159158recnd 10987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
160159abscld 15129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
161 eqid 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
162 eqid 2739 . . . . . . . . . . . . . . . . . . . . . 22 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
163151, 160, 110, 161, 162suprnmpt 42663 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
164163simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
165147, 164eqeltrid 2844 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ∈ ℝ)
166165adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑌 ∈ ℝ)
167 rpre 12720 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
168167rehalfcld 12203 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
169168adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
170167recnd 10987 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
171170adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
172 2cnd 12034 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
173 rpne0 12728 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ≠ 0)
174173adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
175 2ne0 12060 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
176175a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
177171, 172, 174, 176divne0d 11750 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ≠ 0)
178166, 169, 177redivcld 11786 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
179178flcld 13499 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
180179peano2zd 12411 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
181180, 142ifcld 4510 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
182146, 181eqeltrid 2844 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
183182zred 12408 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℝ)
184183adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
185180zred 12408 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
186 max1 12901 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
187143, 185, 186syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
188187, 146breqtrrdi 5120 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑁)
189188adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑁)
190 eluzle 12577 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑁) → 𝑁𝑗)
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁𝑗)
192144, 184, 138, 189, 191letrd 11115 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑗)
193139, 144, 138, 145, 192ltletrd 11118 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑗)
194193gt0ne0d 11522 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
195138, 194rereccld 11785 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ)
196138, 193recgt0d 11892 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < (1 / 𝑗))
197195, 196elrpd 12751 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ+)
198197adantr 480 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → (1 / 𝑗) ∈ ℝ+)
199 ioodvbdlimc1lem2.ch . . . . . . . . 9 (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
200199biimpi 215 . . . . . . . . . . . . . . . . 17 (𝜒 → (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
201 simp-5l 781 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝜑)
202200, 201syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
203202, 26syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:(𝐴(,)𝐵)⟶ℝ)
204200simplrd 766 . . . . . . . . . . . . . . 15 (𝜒𝑧 ∈ (𝐴(,)𝐵))
205203, 204ffvelrnd 6956 . . . . . . . . . . . . . 14 (𝜒 → (𝐹𝑧) ∈ ℝ)
206205recnd 10987 . . . . . . . . . . . . 13 (𝜒 → (𝐹𝑧) ∈ ℂ)
207202, 108syl 17 . . . . . . . . . . . . . . 15 (𝜒𝑆:(ℤ𝑀)⟶ℝ)
208 simp-5r 782 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝑥 ∈ ℝ+)
209200, 208syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑥 ∈ ℝ+)
210 eluz2 12570 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
211142, 182, 188, 210syl3anbrc 1341 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑀))
212202, 209, 211syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜒𝑁 ∈ (ℤ𝑀))
213 uzss 12587 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
214212, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → (ℤ𝑁) ⊆ (ℤ𝑀))
215 simp-4r 780 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝑗 ∈ (ℤ𝑁))
216200, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑗 ∈ (ℤ𝑁))
217214, 216sseldd 3926 . . . . . . . . . . . . . . 15 (𝜒𝑗 ∈ (ℤ𝑀))
218207, 217ffvelrnd 6956 . . . . . . . . . . . . . 14 (𝜒 → (𝑆𝑗) ∈ ℝ)
219218recnd 10987 . . . . . . . . . . . . 13 (𝜒 → (𝑆𝑗) ∈ ℂ)
220202, 136syl 17 . . . . . . . . . . . . 13 (𝜒 → (lim sup‘𝑆) ∈ ℂ)
221206, 219, 220npncand 11339 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) = ((𝐹𝑧) − (lim sup‘𝑆)))
222221eqcomd 2745 . . . . . . . . . . 11 (𝜒 → ((𝐹𝑧) − (lim sup‘𝑆)) = (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))))
223222fveq2d 6772 . . . . . . . . . 10 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) = (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))))
224205, 218resubcld 11386 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℝ)
225202, 135syl 17 . . . . . . . . . . . . . . 15 (𝜒 → (lim sup‘𝑆) ∈ ℝ)
226218, 225resubcld 11386 . . . . . . . . . . . . . 14 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℝ)
227224, 226readdcld 10988 . . . . . . . . . . . . 13 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
228227recnd 10987 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℂ)
229228abscld 15129 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
230224recnd 10987 . . . . . . . . . . . . 13 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℂ)
231230abscld 15129 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ∈ ℝ)
232226recnd 10987 . . . . . . . . . . . . 13 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℂ)
233232abscld 15129 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
234231, 233readdcld 10988 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
235209rpred 12754 . . . . . . . . . . 11 (𝜒𝑥 ∈ ℝ)
236230, 232abstrid 15149 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ≤ ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))))
237235rehalfcld 12203 . . . . . . . . . . . . 13 (𝜒 → (𝑥 / 2) ∈ ℝ)
238206, 219abssubd 15146 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) = (abs‘((𝑆𝑗) − (𝐹𝑧))))
239202, 217, 115syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
240239fvoveq1d 7290 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝑆𝑗) − (𝐹𝑧))) = (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))))
241202, 217, 106syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ)
242241, 205resubcld 11386 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧)) ∈ ℝ)
243242recnd 10987 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧)) ∈ ℂ)
244243abscld 15129 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ∈ ℝ)
245202, 165syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑌 ∈ ℝ)
246202, 217, 58syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐴 + (1 / 𝑗)) ∈ ℝ)
247152, 204sselid 3923 . . . . . . . . . . . . . . . . . 18 (𝜒𝑧 ∈ ℝ)
248246, 247resubcld 11386 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) ∈ ℝ)
249245, 248remulcld 10989 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ∈ ℝ)
250202, 7syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐴 ∈ ℝ)
251202, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐵 ∈ ℝ)
252202, 109syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
253163simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
254147breq2i 5086 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
255254ralbii 3092 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
256253, 255sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
257202, 256syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
258 2fveq3 6773 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑤)) = (abs‘((ℝ D 𝐹)‘𝑥)))
259258breq1d 5088 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌))
260259cbvralvw 3380 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
261257, 260sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌)
262247rexrd 11009 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ*)
263202, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐵 ∈ ℝ*)
264247, 250resubcld 11386 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐴) ∈ ℝ)
265264recnd 10987 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧𝐴) ∈ ℂ)
266265abscld 15129 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝑧𝐴)) ∈ ℝ)
2673, 217sselid 3923 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ∈ ℝ)
268202, 217, 56syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ≠ 0)
269267, 268rereccld 11785 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ∈ ℝ)
270264leabsd 15107 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐴) ≤ (abs‘(𝑧𝐴)))
271200simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝑧𝐴)) < (1 / 𝑗))
272264, 266, 269, 270, 271lelttrd 11116 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑧𝐴) < (1 / 𝑗))
273247, 250, 269ltsubadd2d 11556 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑧𝐴) < (1 / 𝑗) ↔ 𝑧 < (𝐴 + (1 / 𝑗))))
274272, 273mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 < (𝐴 + (1 / 𝑗)))
275202, 217, 104syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐴 + (1 / 𝑗)) < 𝐵)
276262, 263, 246, 274, 275eliood 42990 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐴 + (1 / 𝑗)) ∈ (𝑧(,)𝐵))
277250, 251, 203, 252, 245, 261, 204, 276dvbdfbdioolem1 43423 . . . . . . . . . . . . . . . . 17 (𝜒 → ((abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ∧ (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · (𝐵𝐴))))
278277simpld 494 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)))
279202, 217, 57syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → (1 / 𝑗) ∈ ℝ)
280245, 279remulcld 10989 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · (1 / 𝑗)) ∈ ℝ)
281157, 149ffvelrnd 6956 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
282281recnd 10987 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
283282abscld 15129 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
284282absge0d 15137 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
285 2fveq3 6773 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
286147eqcomi 2748 . . . . . . . . . . . . . . . . . . . . . . . 24 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌)
288285, 287breq12d 5091 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌))
289288rspcva 3558 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
290149, 253, 289syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
29114, 283, 165, 284, 290letrd 11115 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑌)
292202, 291syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ≤ 𝑌)
293202, 28syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝐴 ∈ ℝ*)
294 ioogtlb 42987 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
295293, 263, 204, 294syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝐴 < 𝑧)
296250, 247, 246, 295ltsub2dd 11571 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) < ((𝐴 + (1 / 𝑗)) − 𝐴))
297202, 98syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝐴 ∈ ℂ)
298279recnd 10987 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ∈ ℂ)
299297, 298pncan2d 11317 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝐴) = (1 / 𝑗))
300296, 299breqtrd 5104 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) < (1 / 𝑗))
301248, 269, 300ltled 11106 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) ≤ (1 / 𝑗))
302248, 269, 245, 292, 301lemul2ad 11898 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ≤ (𝑌 · (1 / 𝑗)))
303280adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
304237adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑥 / 2) ∈ ℝ)
305 oveq1 7275 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 0 → (𝑌 · (1 / 𝑗)) = (0 · (1 / 𝑗)))
306298mul02d 11156 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (0 · (1 / 𝑗)) = 0)
307305, 306sylan9eqr 2801 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) = 0)
308209rphalfcld 12766 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑥 / 2) ∈ ℝ+)
309308rpgt0d 12757 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → 0 < (𝑥 / 2))
310309adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑌 = 0) → 0 < (𝑥 / 2))
311307, 310eqbrtrd 5100 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) < (𝑥 / 2))
312303, 304, 311ltled 11106 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
313245adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ∈ ℝ)
314292adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 ≤ 𝑌)
315 neqne 2952 . . . . . . . . . . . . . . . . . . . . 21 𝑌 = 0 → 𝑌 ≠ 0)
316315adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
317313, 314, 316ne0gt0d 11095 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 < 𝑌)
318280adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
3193, 212sselid 3923 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ∈ ℝ)
320 0red 10962 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → 0 ∈ ℝ)
321202, 209, 143syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑀 ∈ ℝ)
322202, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → 0 < 𝑀)
323202, 209, 188syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑀𝑁)
324320, 321, 319, 322, 323ltletrd 11118 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 < 𝑁)
325324gt0ne0d 11522 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ≠ 0)
326319, 325rereccld 11785 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (1 / 𝑁) ∈ ℝ)
327245, 326remulcld 10989 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑌 · (1 / 𝑁)) ∈ ℝ)
328327adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ∈ ℝ)
329237adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℝ)
330279adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ∈ ℝ)
331326adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ∈ ℝ)
332245adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℝ)
333292adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 𝑌)
334319, 324elrpd 12751 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ∈ ℝ+)
335202, 217, 59syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑗 ∈ ℝ+)
336 1red 10960 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 1 ∈ ℝ)
33776a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 0 ≤ 1)
338216, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁𝑗)
339334, 335, 336, 337, 338lediv2ad 12776 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (1 / 𝑗) ≤ (1 / 𝑁))
340339adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ≤ (1 / 𝑁))
341330, 331, 332, 333, 340lemul2ad 11898 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑌 · (1 / 𝑁)))
342235recnd 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑥 ∈ ℂ)
343 2cnd 12034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → 2 ∈ ℂ)
344209rpne0d 12759 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑥 ≠ 0)
345175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → 2 ≠ 0)
346342, 343, 344, 345divne0d 11750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑥 / 2) ≠ 0)
347245, 237, 346redivcld 11786 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) ∈ ℝ)
348347adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
349 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒 ∧ 0 < 𝑌) → 0 < 𝑌)
350309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑥 / 2))
351332, 329, 349, 350divgt0d 11893 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑌 / (𝑥 / 2)))
352348, 351elrpd 12751 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ+)
353352rprecred 12765 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (1 / (𝑌 / (𝑥 / 2))) ∈ ℝ)
354334adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑁 ∈ ℝ+)
355 1red 10960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 1 ∈ ℝ)
35676a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 1)
357347flcld 13499 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
358357peano2zd 12411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
359358zred 12408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
360202, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜒𝑀 ∈ ℤ)
361358, 360ifcld 4510 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
362146, 361eqeltrid 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑁 ∈ ℤ)
363362zred 12408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑁 ∈ ℝ)
364 flltp1 13501 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑌 / (𝑥 / 2)) ∈ ℝ → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
365347, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
366202, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒𝑀 ∈ ℝ)
367 max2 12903 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
368366, 359, 367syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
369368, 146breqtrrdi 5120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ 𝑁)
370347, 359, 363, 365, 369ltletrd 11118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) < 𝑁)
371347, 319, 370ltled 11106 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
372371adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
373352, 354, 355, 356, 372lediv2ad 12776 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ≤ (1 / (𝑌 / (𝑥 / 2))))
374331, 353, 332, 333, 373lemul2ad 11898 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
375332recnd 10987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℂ)
376348recnd 10987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℂ)
377351gt0ne0d 11522 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≠ 0)
378375, 376, 377divrecd 11737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
379329recnd 10987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℂ)
380349gt0ne0d 11522 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ≠ 0)
381346adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ≠ 0)
382375, 379, 380, 381ddcand 11754 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑥 / 2))
383378, 382eqtr3d 2781 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / (𝑌 / (𝑥 / 2)))) = (𝑥 / 2))
384374, 383breqtrd 5104 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑥 / 2))
385318, 328, 329, 341, 384letrd 11115 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
386317, 385syldan 590 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ¬ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
387312, 386pm2.61dan 809 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
388249, 280, 237, 302, 387letrd 11115 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ≤ (𝑥 / 2))
389244, 249, 237, 278, 388letrd 11115 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑥 / 2))
390240, 389eqbrtrd 5100 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝑆𝑗) − (𝐹𝑧))) ≤ (𝑥 / 2))
391238, 390eqbrtrd 5100 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ≤ (𝑥 / 2))
392 simpllr 772 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
393200, 392syl 17 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
394231, 233, 237, 237, 391, 393leltaddd 11580 . . . . . . . . . . . 12 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < ((𝑥 / 2) + (𝑥 / 2)))
3953422halvesd 12202 . . . . . . . . . . . 12 (𝜒 → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
396394, 395breqtrd 5104 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
397229, 234, 235, 236, 396lelttrd 11116 . . . . . . . . . 10 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
398223, 397eqbrtrd 5100 . . . . . . . . 9 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
399199, 398sylbir 234 . . . . . . . 8 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
400399adantrl 712 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗))) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
401400ex 412 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
402401ralrimiva 3109 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
403 brimralrspcev 5139 . . . . 5 (((1 / 𝑗) ∈ ℝ+ ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
404198, 402, 403syl2anc 583 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
405 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑏𝑁)
406405iftrued 4472 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑁)
407 uzid 12579 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
408182, 407syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑁))
409408adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑁 ∈ (ℤ𝑁))
410406, 409eqeltrd 2840 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
411410adantlr 711 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
412 iffalse 4473 . . . . . . . . . 10 𝑏𝑁 → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
413412adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
414182ad2antrr 722 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℤ)
415 simplr 765 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℤ)
416414zred 12408 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℝ)
417415zred 12408 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℝ)
418 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → ¬ 𝑏𝑁)
419416, 417ltnled 11105 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → (𝑁 < 𝑏 ↔ ¬ 𝑏𝑁))
420418, 419mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 < 𝑏)
421416, 417, 420ltled 11106 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁𝑏)
422 eluz2 12570 . . . . . . . . . 10 (𝑏 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁𝑏))
423414, 415, 421, 422syl3anbrc 1341 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ (ℤ𝑁))
424413, 423eqeltrd 2840 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
425411, 424pm2.61dan 809 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
426425adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
427 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
428 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
429182adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
430429, 428ifcld 4510 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ)
431428zred 12408 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
432429zred 12408 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℝ)
433 max1 12901 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
434431, 432, 433syl2anc 583 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
435 eluz2 12570 . . . . . . . . . 10 (if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ ∧ 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏)))
436428, 430, 434, 435syl3anbrc 1341 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
437436adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
438 fveq2 6768 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑐) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
439438eleq1d 2824 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((𝑆𝑐) ∈ ℂ ↔ (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ))
440438fvoveq1d 7290 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑐) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
441440breq1d 5088 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
442439, 441anbi12d 630 . . . . . . . . 9 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ↔ ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))))
443442rspccva 3559 . . . . . . . 8 ((∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏)) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
444427, 437, 443syl2anc 583 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
445444simprd 495 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))
446 fveq2 6768 . . . . . . . . 9 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑗) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
447446fvoveq1d 7290 . . . . . . . 8 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
448447breq1d 5088 . . . . . . 7 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
449448rspcev 3560 . . . . . 6 ((if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁) ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
450426, 445, 449syl2anc 583 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
451 ax-resscn 10912 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
452451a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
45326, 452fssd 6614 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
454 dvcn 25066 . . . . . . . . . . . . . 14 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
455452, 453, 153, 109, 454syl31anc 1371 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
456 cncffvrn 24042 . . . . . . . . . . . . 13 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
457452, 455, 456syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
45826, 457mpbird 256 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
459 ioodvbdlimc1lem2.r . . . . . . . . . . . 12 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗)))
460105, 459fmptd 6982 . . . . . . . . . . 11 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
461 eqid 2739 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
462 climrel 15182 . . . . . . . . . . . . 13 Rel ⇝
463462a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ⇝ )
464 fvex 6781 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ∈ V
465464mptex 7093 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ∈ V
466465a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ∈ V)
467 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐴))
468 eqidd 2740 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑚) → 𝐴 = 𝐴)
469 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
4707adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
471467, 468, 469, 470fvmptd 6876 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑚) = 𝐴)
47223, 141, 466, 98, 471climconst 15233 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ⇝ 𝐴)
473464mptex 7093 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗))) ∈ V
474459, 473eqeltri 2836 . . . . . . . . . . . . . . 15 𝑅 ∈ V
475474a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ V)
476 1cnd 10954 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
477 elnnnn0b 12260 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0 ∧ 0 < 𝑀))
47821, 67, 477sylanbrc 582 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
479 divcnvg 43122 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
480476, 478, 479syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
481 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐴))
482 eqidd 2740 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → 𝐴 = 𝐴)
483 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
485481, 482, 483, 484fvmptd 6876 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) = 𝐴)
48698adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
487485, 486eqeltrd 2840 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) ∈ ℂ)
488 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) = (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)))
489 oveq2 7276 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (1 / 𝑗) = (1 / 𝑖))
490489adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → (1 / 𝑗) = (1 / 𝑖))
4913, 483sselid 3923 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
492 0red 10962 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
49362adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
49467adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑀)
495 eluzle 12577 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
496495adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
497492, 493, 491, 494, 496ltletrd 11118 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑖)
498497gt0ne0d 11522 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≠ 0)
499491, 498rereccld 11785 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℝ)
500488, 490, 483, 499fvmptd 6876 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) = (1 / 𝑖))
501491recnd 10987 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℂ)
502501, 498reccld 11727 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℂ)
503500, 502eqeltrd 2840 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) ∈ ℂ)
504489oveq2d 7284 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝐴 + (1 / 𝑗)) = (𝐴 + (1 / 𝑖)))
505484, 499readdcld 10988 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑖)) ∈ ℝ)
506459, 504, 483, 505fvmptd3 6892 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (𝐴 + (1 / 𝑖)))
507485, 500oveq12d 7286 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) + ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)) = (𝐴 + (1 / 𝑖)))
508506, 507eqtr4d 2782 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) + ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)))
50923, 141, 472, 475, 480, 487, 503, 508climadd 15322 . . . . . . . . . . . . 13 (𝜑𝑅 ⇝ (𝐴 + 0))
51098addid1d 11158 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 0) = 𝐴)
511509, 510breqtrd 5104 . . . . . . . . . . . 12 (𝜑𝑅𝐴)
512 releldm 5850 . . . . . . . . . . . 12 ((Rel ⇝ ∧ 𝑅𝐴) → 𝑅 ∈ dom ⇝ )
513463, 511, 512syl2anc 583 . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
514 fveq2 6768 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
515 fveq2 6768 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → (𝑅𝑙) = (𝑅𝑘))
516515oveq2d 7284 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑘 → ((𝑅) − (𝑅𝑙)) = ((𝑅) − (𝑅𝑘)))
517516fveq2d 6772 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (abs‘((𝑅) − (𝑅𝑙))) = (abs‘((𝑅) − (𝑅𝑘))))
518517breq1d 5088 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → ((abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
519514, 518raleqbidv 3334 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
520519cbvrabv 3424 . . . . . . . . . . . . 13 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
521 fveq2 6768 . . . . . . . . . . . . . . . . . 18 ( = 𝑖 → (𝑅) = (𝑅𝑖))
522521fvoveq1d 7290 . . . . . . . . . . . . . . . . 17 ( = 𝑖 → (abs‘((𝑅) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝑘))))
523522breq1d 5088 . . . . . . . . . . . . . . . 16 ( = 𝑖 → ((abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
524523cbvralvw 3380 . . . . . . . . . . . . . . 15 (∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
525524rgenw 3077 . . . . . . . . . . . . . 14 𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
526 rabbi 3314 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) ↔ {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
527525, 526mpbi 229 . . . . . . . . . . . . 13 {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
528520, 527eqtri 2767 . . . . . . . . . . . 12 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
529528infeq1i 9198 . . . . . . . . . . 11 inf({𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
5307, 6, 9, 458, 109, 110, 22, 460, 461, 513, 529ioodvbdlimc1lem1 43426 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) ⇝ (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
531459fvmpt2 6880 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐴 + (1 / 𝑗)) ∈ ℝ) → (𝑅𝑗) = (𝐴 + (1 / 𝑗)))
532113, 58, 531syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) = (𝐴 + (1 / 𝑗)))
533532eqcomd 2745 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) = (𝑅𝑗))
534533fveq2d 6772 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐴 + (1 / 𝑗))) = (𝐹‘(𝑅𝑗)))
535534mpteq2dva 5178 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
536107, 535eqtrid 2791 . . . . . . . . . 10 (𝜑𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
537536fveq2d 6772 . . . . . . . . . 10 (𝜑 → (lim sup‘𝑆) = (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
538530, 536, 5373brtr4d 5110 . . . . . . . . 9 (𝜑𝑆 ⇝ (lim sup‘𝑆))
539464mptex 7093 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) ∈ V
540107, 539eqeltri 2836 . . . . . . . . . . 11 𝑆 ∈ V
541540a1i 11 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
542 eqidd 2740 . . . . . . . . . 10 ((𝜑𝑐 ∈ ℤ) → (𝑆𝑐) = (𝑆𝑐))
543541, 542clim 15184 . . . . . . . . 9 (𝜑 → (𝑆 ⇝ (lim sup‘𝑆) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))))
544538, 543mpbid 231 . . . . . . . 8 (𝜑 → ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎)))
545544simprd 495 . . . . . . 7 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
546545adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
547 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
548547rphalfcld 12766 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
549 breq2 5082 . . . . . . . . 9 (𝑎 = (𝑥 / 2) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎 ↔ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
550549anbi2d 628 . . . . . . . 8 (𝑎 = (𝑥 / 2) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
551550rexralbidv 3231 . . . . . . 7 (𝑎 = (𝑥 / 2) → (∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
552551rspccva 3559 . . . . . 6 ((∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ∧ (𝑥 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
553546, 548, 552syl2anc 583 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
554450, 553r19.29a 3219 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
555404, 554r19.29a 3219 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
556555ralrimiva 3109 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
557 ioosscn 13123 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
558557a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
559453, 558, 98ellimc3 25024 . 2 (𝜑 → ((lim sup‘𝑆) ∈ (𝐹 lim 𝐴) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))))
560136, 556, 559mpbir2and 709 1 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  wss 3891  c0 4261  ifcif 4464   class class class wbr 5078  cmpt 5161  dom cdm 5588  ran crn 5589  Rel wrel 5593  wf 6426  cfv 6430  (class class class)co 7268  supcsup 9160  infcinf 9161  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  +∞cpnf 10990  *cxr 10992   < clt 10993  cle 10994  cmin 11188   / cdiv 11615  cn 11956  2c2 12011  0cn0 12216  cz 12302  cuz 12564  +crp 12712  (,)cioo 13061  cfl 13491  abscabs 14926  lim supclsp 15160  cli 15174  cnccncf 24020   lim climc 25007   D cdv 25008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-cmp 22519  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012
This theorem is referenced by:  ioodvbdlimc1  43428
  Copyright terms: Public domain W3C validator