Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem2 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem2 45903
Description: Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem2.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem2.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem2.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
ioodvbdlimc1lem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem2.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem2.y 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
ioodvbdlimc1lem2.m 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
ioodvbdlimc1lem2.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))
ioodvbdlimc1lem2.r 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗)))
ioodvbdlimc1lem2.n 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
ioodvbdlimc1lem2.ch (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
Assertion
Ref Expression
ioodvbdlimc1lem2 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐴))
Distinct variable groups:   𝑥,𝑌   𝜑,𝑧   𝑅,𝑗,𝑥,𝑦   𝑗,𝑁,𝑧   𝑥,𝑀,𝑦,𝑗   𝑦,𝐴,𝑧   𝑦,𝑆,𝑧   𝑧,𝐵   𝑗,𝐹,𝑥   𝐵,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦   𝑆,𝑗   𝑦,𝐹,𝑧,𝑥   𝐴,𝑗,𝑥   𝑥,𝑆
Allowed substitution hints:   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑅(𝑧)   𝑀(𝑧)   𝑁(𝑥,𝑦)   𝑌(𝑦,𝑧,𝑗)

Proof of Theorem ioodvbdlimc1lem2
Dummy variables 𝑏 𝑘 𝑚 𝑤 𝑖 𝑙 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 12790 . . . . . 6 (ℤ𝑀) ⊆ ℤ
2 zssre 12512 . . . . . 6 ℤ ⊆ ℝ
31, 2sstri 3953 . . . . 5 (ℤ𝑀) ⊆ ℝ
43a1i 11 . . . 4 (𝜑 → (ℤ𝑀) ⊆ ℝ)
5 ioodvbdlimc1lem2.m . . . . . . 7 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
6 ioodvbdlimc1lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
7 ioodvbdlimc1lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
86, 7resubcld 11582 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
9 ioodvbdlimc1lem2.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
107, 6posdifd 11741 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
119, 10mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1211gt0ne0d 11718 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
138, 12rereccld 11985 . . . . . . . . 9 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ)
14 0red 11153 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
158, 11recgt0d 12093 . . . . . . . . . 10 (𝜑 → 0 < (1 / (𝐵𝐴)))
1614, 13, 15ltled 11298 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / (𝐵𝐴)))
17 flge0nn0 13758 . . . . . . . . 9 (((1 / (𝐵𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐵𝐴))) → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
1813, 16, 17syl2anc 584 . . . . . . . 8 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
19 peano2nn0 12458 . . . . . . . 8 ((⌊‘(1 / (𝐵𝐴))) ∈ ℕ0 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
2018, 19syl 17 . . . . . . 7 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
215, 20eqeltrid 2832 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2221nn0zd 12531 . . . . 5 (𝜑𝑀 ∈ ℤ)
23 eqid 2729 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
2423uzsup 13801 . . . . 5 (𝑀 ∈ ℤ → sup((ℤ𝑀), ℝ*, < ) = +∞)
2522, 24syl 17 . . . 4 (𝜑 → sup((ℤ𝑀), ℝ*, < ) = +∞)
26 ioodvbdlimc1lem2.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2726adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
287rexrd 11200 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ*)
306rexrd 11200 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3130adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ*)
327adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
33 eluzelre 12780 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
3433adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ)
35 0red 11153 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
36 0red 11153 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 0 ∈ ℝ)
37 1red 11151 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℝ)
3836, 37readdcld 11179 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (0 + 1) ∈ ℝ)
3938adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ∈ ℝ)
4036ltp1d 12089 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 0 < (0 + 1))
4140adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < (0 + 1))
42 eluzel2 12774 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4342zred 12614 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4443adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
4513flcld 13736 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℤ)
4645zred 12614 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℝ)
47 1red 11151 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4818nn0ge0d 12482 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (⌊‘(1 / (𝐵𝐴))))
4914, 46, 47, 48leadd1dd 11768 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ ((⌊‘(1 / (𝐵𝐴))) + 1))
5049, 5breqtrrdi 5144 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ 𝑀)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑀)
52 eluzle 12782 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀𝑗)
5439, 44, 34, 51, 53letrd 11307 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑗)
5535, 39, 34, 41, 54ltletrd 11310 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < 𝑗)
5655gt0ne0d 11718 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ≠ 0)
5734, 56rereccld 11985 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ)
5832, 57readdcld 11179 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ ℝ)
5934, 55elrpd 12968 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ+)
6059rpreccld 12981 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ+)
6132, 60ltaddrpd 13004 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐴 + (1 / 𝑗)))
6221nn0red 12480 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
6314, 47readdcld 11179 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
6446, 47readdcld 11179 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ)
6514ltp1d 12089 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
6614, 63, 64, 65, 49ltletrd 11310 . . . . . . . . . . . . 13 (𝜑 → 0 < ((⌊‘(1 / (𝐵𝐴))) + 1))
6766, 5breqtrrdi 5144 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
6867gt0ne0d 11718 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6962, 68rereccld 11985 . . . . . . . . . 10 (𝜑 → (1 / 𝑀) ∈ ℝ)
7069adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑀) ∈ ℝ)
7132, 70readdcld 11179 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑀)) ∈ ℝ)
726adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
7362, 67elrpd 12968 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ+)
75 1red 11151 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
76 0le1 11677 . . . . . . . . . . 11 0 ≤ 1
7776a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ≤ 1)
7874, 59, 75, 77, 53lediv2ad 12993 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ≤ (1 / 𝑀))
7957, 70, 32, 78leadd2dd 11769 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ≤ (𝐴 + (1 / 𝑀)))
805eqcomi 2738 . . . . . . . . . . . . 13 ((⌊‘(1 / (𝐵𝐴))) + 1) = 𝑀
8180oveq2i 7380 . . . . . . . . . . . 12 (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) = (1 / 𝑀)
8281, 69eqeltrid 2832 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) ∈ ℝ)
8313, 15elrpd 12968 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ+)
8464, 66elrpd 12968 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ+)
85 1rp 12931 . . . . . . . . . . . . . 14 1 ∈ ℝ+
8685a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
87 fllelt 13735 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) ∈ ℝ → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
8988simprd 495 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1))
9083, 84, 86, 89ltdiv2dd 45265 . . . . . . . . . . . 12 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (1 / (1 / (𝐵𝐴))))
918recnd 11178 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℂ)
9291, 12recrecd 11931 . . . . . . . . . . . 12 (𝜑 → (1 / (1 / (𝐵𝐴))) = (𝐵𝐴))
9390, 92breqtrd 5128 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (𝐵𝐴))
9482, 8, 7, 93ltadd2dd 11309 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) < (𝐴 + (𝐵𝐴)))
955oveq2i 7380 . . . . . . . . . . . 12 (1 / 𝑀) = (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))
9695oveq2i 7380 . . . . . . . . . . 11 (𝐴 + (1 / 𝑀)) = (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)))
9796a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 𝑀)) = (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))))
987recnd 11178 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
996recnd 11178 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
10098, 99pncan3d 11512 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
101100eqcomd 2735 . . . . . . . . . 10 (𝜑𝐵 = (𝐴 + (𝐵𝐴)))
10294, 97, 1013brtr4d 5134 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝑀)) < 𝐵)
103102adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑀)) < 𝐵)
10458, 71, 72, 79, 103lelttrd 11308 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) < 𝐵)
10529, 31, 58, 61, 104eliood 45469 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵))
10627, 105ffvelcdmd 7039 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ)
107 ioodvbdlimc1lem2.s . . . . 5 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))
108106, 107fmptd 7068 . . . 4 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
109 ioodvbdlimc1lem2.dmdv . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
110 ioodvbdlimc1lem2.dvbd . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
1117, 6, 9, 26, 109, 110dvbdfbdioo 45901 . . . . 5 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
11262adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → 𝑀 ∈ ℝ)
113 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
114107fvmpt2 6961 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ) → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
115113, 106, 114syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
116115fveq2d 6844 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
117116adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
118 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
119105adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵))
120 2fveq3 6845 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 + (1 / 𝑗)) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
121120breq1d 5112 . . . . . . . . . . . . 13 (𝑥 = (𝐴 + (1 / 𝑗)) → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏))
122121rspccva 3584 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ∧ (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏)
123118, 119, 122syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏)
124117, 123eqbrtrd 5124 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) ≤ 𝑏)
125124a1d 25 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
126125ralrimiva 3125 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
127 breq1 5105 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘𝑗𝑀𝑗))
128127imbi1d 341 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
129128ralbidv 3156 . . . . . . . . 9 (𝑘 = 𝑀 → (∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
130129rspcev 3585 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
131112, 126, 130syl2anc 584 . . . . . . 7 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
132131ex 412 . . . . . 6 (𝜑 → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
133132reximdv 3148 . . . . 5 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
134111, 133mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
1354, 25, 108, 134limsupre 45612 . . 3 (𝜑 → (lim sup‘𝑆) ∈ ℝ)
136135recnd 11178 . 2 (𝜑 → (lim sup‘𝑆) ∈ ℂ)
137 eluzelre 12780 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
138137adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
139 0red 11153 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
14045peano2zd 12617 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℤ)
1415, 140eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
142141adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
143142zred 12614 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℝ)
144143adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀 ∈ ℝ)
14567ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑀)
146 ioodvbdlimc1lem2.n . . . . . . . . . . . . . 14 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
147 ioodvbdlimc1lem2.y . . . . . . . . . . . . . . . . . . . 20 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
148 ioomidp 45485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
1497, 6, 9, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
150 ne0i 4300 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
151149, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
152 ioossre 13344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ ℝ
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
154 dvfre 25831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
15526, 153, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
156109feq2d 6654 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
157155, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
158157ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
159158recnd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
160159abscld 15381 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
161 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
162 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
163151, 160, 110, 161, 162suprnmpt 45141 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
164163simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
165147, 164eqeltrid 2832 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ∈ ℝ)
166165adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑌 ∈ ℝ)
167 rpre 12936 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
168167rehalfcld 12405 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
169168adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
170167recnd 11178 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
171170adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
172 2cnd 12240 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
173 rpne0 12944 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ≠ 0)
174173adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
175 2ne0 12266 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
176175a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
177171, 172, 174, 176divne0d 11950 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ≠ 0)
178166, 169, 177redivcld 11986 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
179178flcld 13736 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
180179peano2zd 12617 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
181180, 142ifcld 4531 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
182146, 181eqeltrid 2832 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
183182zred 12614 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℝ)
184183adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
185180zred 12614 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
186 max1 13121 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
187143, 185, 186syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
188187, 146breqtrrdi 5144 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑁)
189188adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑁)
190 eluzle 12782 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑁) → 𝑁𝑗)
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁𝑗)
192144, 184, 138, 189, 191letrd 11307 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑗)
193139, 144, 138, 145, 192ltletrd 11310 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑗)
194193gt0ne0d 11718 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
195138, 194rereccld 11985 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ)
196138, 193recgt0d 12093 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < (1 / 𝑗))
197195, 196elrpd 12968 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ+)
198197adantr 480 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → (1 / 𝑗) ∈ ℝ+)
199 ioodvbdlimc1lem2.ch . . . . . . . . 9 (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
200199biimpi 216 . . . . . . . . . . . . . . . . 17 (𝜒 → (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
201 simp-5l 784 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝜑)
202200, 201syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
203202, 26syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:(𝐴(,)𝐵)⟶ℝ)
204200simplrd 769 . . . . . . . . . . . . . . 15 (𝜒𝑧 ∈ (𝐴(,)𝐵))
205203, 204ffvelcdmd 7039 . . . . . . . . . . . . . 14 (𝜒 → (𝐹𝑧) ∈ ℝ)
206205recnd 11178 . . . . . . . . . . . . 13 (𝜒 → (𝐹𝑧) ∈ ℂ)
207202, 108syl 17 . . . . . . . . . . . . . . 15 (𝜒𝑆:(ℤ𝑀)⟶ℝ)
208 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝑥 ∈ ℝ+)
209200, 208syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑥 ∈ ℝ+)
210 eluz2 12775 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
211142, 182, 188, 210syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑀))
212202, 209, 211syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜒𝑁 ∈ (ℤ𝑀))
213 uzss 12792 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
214212, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → (ℤ𝑁) ⊆ (ℤ𝑀))
215 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝑗 ∈ (ℤ𝑁))
216200, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑗 ∈ (ℤ𝑁))
217214, 216sseldd 3944 . . . . . . . . . . . . . . 15 (𝜒𝑗 ∈ (ℤ𝑀))
218207, 217ffvelcdmd 7039 . . . . . . . . . . . . . 14 (𝜒 → (𝑆𝑗) ∈ ℝ)
219218recnd 11178 . . . . . . . . . . . . 13 (𝜒 → (𝑆𝑗) ∈ ℂ)
220202, 136syl 17 . . . . . . . . . . . . 13 (𝜒 → (lim sup‘𝑆) ∈ ℂ)
221206, 219, 220npncand 11533 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) = ((𝐹𝑧) − (lim sup‘𝑆)))
222221eqcomd 2735 . . . . . . . . . . 11 (𝜒 → ((𝐹𝑧) − (lim sup‘𝑆)) = (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))))
223222fveq2d 6844 . . . . . . . . . 10 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) = (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))))
224205, 218resubcld 11582 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℝ)
225202, 135syl 17 . . . . . . . . . . . . . . 15 (𝜒 → (lim sup‘𝑆) ∈ ℝ)
226218, 225resubcld 11582 . . . . . . . . . . . . . 14 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℝ)
227224, 226readdcld 11179 . . . . . . . . . . . . 13 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
228227recnd 11178 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℂ)
229228abscld 15381 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
230224recnd 11178 . . . . . . . . . . . . 13 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℂ)
231230abscld 15381 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ∈ ℝ)
232226recnd 11178 . . . . . . . . . . . . 13 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℂ)
233232abscld 15381 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
234231, 233readdcld 11179 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
235209rpred 12971 . . . . . . . . . . 11 (𝜒𝑥 ∈ ℝ)
236230, 232abstrid 15401 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ≤ ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))))
237235rehalfcld 12405 . . . . . . . . . . . . 13 (𝜒 → (𝑥 / 2) ∈ ℝ)
238206, 219abssubd 15398 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) = (abs‘((𝑆𝑗) − (𝐹𝑧))))
239202, 217, 115syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
240239fvoveq1d 7391 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝑆𝑗) − (𝐹𝑧))) = (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))))
241202, 217, 106syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ)
242241, 205resubcld 11582 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧)) ∈ ℝ)
243242recnd 11178 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧)) ∈ ℂ)
244243abscld 15381 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ∈ ℝ)
245202, 165syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑌 ∈ ℝ)
246202, 217, 58syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐴 + (1 / 𝑗)) ∈ ℝ)
247152, 204sselid 3941 . . . . . . . . . . . . . . . . . 18 (𝜒𝑧 ∈ ℝ)
248246, 247resubcld 11582 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) ∈ ℝ)
249245, 248remulcld 11180 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ∈ ℝ)
250202, 7syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐴 ∈ ℝ)
251202, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐵 ∈ ℝ)
252202, 109syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
253163simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
254147breq2i 5110 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
255254ralbii 3075 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
256253, 255sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
257202, 256syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
258 2fveq3 6845 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑤)) = (abs‘((ℝ D 𝐹)‘𝑥)))
259258breq1d 5112 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌))
260259cbvralvw 3213 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
261257, 260sylibr 234 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌)
262247rexrd 11200 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ*)
263202, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐵 ∈ ℝ*)
264247, 250resubcld 11582 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐴) ∈ ℝ)
265264recnd 11178 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧𝐴) ∈ ℂ)
266265abscld 15381 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝑧𝐴)) ∈ ℝ)
2673, 217sselid 3941 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ∈ ℝ)
268202, 217, 56syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ≠ 0)
269267, 268rereccld 11985 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ∈ ℝ)
270264leabsd 15357 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐴) ≤ (abs‘(𝑧𝐴)))
271200simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝑧𝐴)) < (1 / 𝑗))
272264, 266, 269, 270, 271lelttrd 11308 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑧𝐴) < (1 / 𝑗))
273247, 250, 269ltsubadd2d 11752 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑧𝐴) < (1 / 𝑗) ↔ 𝑧 < (𝐴 + (1 / 𝑗))))
274272, 273mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 < (𝐴 + (1 / 𝑗)))
275202, 217, 104syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐴 + (1 / 𝑗)) < 𝐵)
276262, 263, 246, 274, 275eliood 45469 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐴 + (1 / 𝑗)) ∈ (𝑧(,)𝐵))
277250, 251, 203, 252, 245, 261, 204, 276dvbdfbdioolem1 45899 . . . . . . . . . . . . . . . . 17 (𝜒 → ((abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ∧ (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · (𝐵𝐴))))
278277simpld 494 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)))
279202, 217, 57syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (1 / 𝑗) ∈ ℝ)
280245, 279remulcld 11180 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · (1 / 𝑗)) ∈ ℝ)
281157, 149ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
282281recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
283282abscld 15381 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
284282absge0d 15389 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
285 2fveq3 6845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
286147eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌)
288285, 287breq12d 5115 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌))
289288rspcva 3583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
290149, 253, 289syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
29114, 283, 165, 284, 290letrd 11307 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑌)
292202, 291syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ≤ 𝑌)
293202, 28syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝐴 ∈ ℝ*)
294 ioogtlb 45466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
295293, 263, 204, 294syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝐴 < 𝑧)
296250, 247, 246, 295ltsub2dd 11767 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) < ((𝐴 + (1 / 𝑗)) − 𝐴))
297202, 98syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝐴 ∈ ℂ)
298279recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ∈ ℂ)
299297, 298pncan2d 11511 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝐴) = (1 / 𝑗))
300296, 299breqtrd 5128 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) < (1 / 𝑗))
301248, 269, 300ltled 11298 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) ≤ (1 / 𝑗))
302248, 269, 245, 292, 301lemul2ad 12099 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ≤ (𝑌 · (1 / 𝑗)))
303280adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
304237adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑥 / 2) ∈ ℝ)
305 oveq1 7376 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 0 → (𝑌 · (1 / 𝑗)) = (0 · (1 / 𝑗)))
306298mul02d 11348 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (0 · (1 / 𝑗)) = 0)
307305, 306sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) = 0)
308209rphalfcld 12983 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑥 / 2) ∈ ℝ+)
309308rpgt0d 12974 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → 0 < (𝑥 / 2))
310309adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑌 = 0) → 0 < (𝑥 / 2))
311307, 310eqbrtrd 5124 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) < (𝑥 / 2))
312303, 304, 311ltled 11298 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
313245adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ∈ ℝ)
314292adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 ≤ 𝑌)
315 neqne 2933 . . . . . . . . . . . . . . . . . . . . 21 𝑌 = 0 → 𝑌 ≠ 0)
316315adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
317313, 314, 316ne0gt0d 11287 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 < 𝑌)
318280adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
3193, 212sselid 3941 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ∈ ℝ)
320 0red 11153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → 0 ∈ ℝ)
321202, 209, 143syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑀 ∈ ℝ)
322202, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → 0 < 𝑀)
323202, 209, 188syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑀𝑁)
324320, 321, 319, 322, 323ltletrd 11310 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 < 𝑁)
325324gt0ne0d 11718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ≠ 0)
326319, 325rereccld 11985 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (1 / 𝑁) ∈ ℝ)
327245, 326remulcld 11180 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑌 · (1 / 𝑁)) ∈ ℝ)
328327adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ∈ ℝ)
329237adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℝ)
330279adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ∈ ℝ)
331326adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ∈ ℝ)
332245adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℝ)
333292adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 𝑌)
334319, 324elrpd 12968 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ∈ ℝ+)
335202, 217, 59syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑗 ∈ ℝ+)
336 1red 11151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 1 ∈ ℝ)
33776a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 0 ≤ 1)
338216, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁𝑗)
339334, 335, 336, 337, 338lediv2ad 12993 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (1 / 𝑗) ≤ (1 / 𝑁))
340339adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ≤ (1 / 𝑁))
341330, 331, 332, 333, 340lemul2ad 12099 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑌 · (1 / 𝑁)))
342235recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑥 ∈ ℂ)
343 2cnd 12240 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → 2 ∈ ℂ)
344209rpne0d 12976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑥 ≠ 0)
345175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → 2 ≠ 0)
346342, 343, 344, 345divne0d 11950 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑥 / 2) ≠ 0)
347245, 237, 346redivcld 11986 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) ∈ ℝ)
348347adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
349 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒 ∧ 0 < 𝑌) → 0 < 𝑌)
350309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑥 / 2))
351332, 329, 349, 350divgt0d 12094 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑌 / (𝑥 / 2)))
352348, 351elrpd 12968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ+)
353352rprecred 12982 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (1 / (𝑌 / (𝑥 / 2))) ∈ ℝ)
354334adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑁 ∈ ℝ+)
355 1red 11151 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 1 ∈ ℝ)
35676a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 1)
357347flcld 13736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
358357peano2zd 12617 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
359358zred 12614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
360202, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜒𝑀 ∈ ℤ)
361358, 360ifcld 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
362146, 361eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑁 ∈ ℤ)
363362zred 12614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑁 ∈ ℝ)
364 flltp1 13738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑌 / (𝑥 / 2)) ∈ ℝ → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
365347, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
366202, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒𝑀 ∈ ℝ)
367 max2 13123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
368366, 359, 367syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
369368, 146breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ 𝑁)
370347, 359, 363, 365, 369ltletrd 11310 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) < 𝑁)
371347, 319, 370ltled 11298 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
372371adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
373352, 354, 355, 356, 372lediv2ad 12993 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ≤ (1 / (𝑌 / (𝑥 / 2))))
374331, 353, 332, 333, 373lemul2ad 12099 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
375332recnd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℂ)
376348recnd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℂ)
377351gt0ne0d 11718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≠ 0)
378375, 376, 377divrecd 11937 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
379329recnd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℂ)
380349gt0ne0d 11718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ≠ 0)
381346adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ≠ 0)
382375, 379, 380, 381ddcand 11954 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑥 / 2))
383378, 382eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / (𝑌 / (𝑥 / 2)))) = (𝑥 / 2))
384374, 383breqtrd 5128 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑥 / 2))
385318, 328, 329, 341, 384letrd 11307 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
386317, 385syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ¬ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
387312, 386pm2.61dan 812 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
388249, 280, 237, 302, 387letrd 11307 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ≤ (𝑥 / 2))
389244, 249, 237, 278, 388letrd 11307 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑥 / 2))
390240, 389eqbrtrd 5124 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝑆𝑗) − (𝐹𝑧))) ≤ (𝑥 / 2))
391238, 390eqbrtrd 5124 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ≤ (𝑥 / 2))
392 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
393200, 392syl 17 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
394231, 233, 237, 237, 391, 393leltaddd 11776 . . . . . . . . . . . 12 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < ((𝑥 / 2) + (𝑥 / 2)))
3953422halvesd 12404 . . . . . . . . . . . 12 (𝜒 → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
396394, 395breqtrd 5128 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
397229, 234, 235, 236, 396lelttrd 11308 . . . . . . . . . 10 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
398223, 397eqbrtrd 5124 . . . . . . . . 9 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
399199, 398sylbir 235 . . . . . . . 8 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
400399adantrl 716 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗))) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
401400ex 412 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
402401ralrimiva 3125 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
403 brimralrspcev 5163 . . . . 5 (((1 / 𝑗) ∈ ℝ+ ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
404198, 402, 403syl2anc 584 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
405 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑏𝑁)
406405iftrued 4492 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑁)
407 uzid 12784 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
408182, 407syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑁))
409408adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑁 ∈ (ℤ𝑁))
410406, 409eqeltrd 2828 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
411410adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
412 iffalse 4493 . . . . . . . . . 10 𝑏𝑁 → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
413412adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
414182ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℤ)
415 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℤ)
416414zred 12614 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℝ)
417415zred 12614 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℝ)
418 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → ¬ 𝑏𝑁)
419416, 417ltnled 11297 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → (𝑁 < 𝑏 ↔ ¬ 𝑏𝑁))
420418, 419mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 < 𝑏)
421416, 417, 420ltled 11298 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁𝑏)
422 eluz2 12775 . . . . . . . . . 10 (𝑏 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁𝑏))
423414, 415, 421, 422syl3anbrc 1344 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ (ℤ𝑁))
424413, 423eqeltrd 2828 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
425411, 424pm2.61dan 812 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
426425adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
427 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
428 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
429182adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
430429, 428ifcld 4531 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ)
431428zred 12614 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
432429zred 12614 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℝ)
433 max1 13121 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
434431, 432, 433syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
435 eluz2 12775 . . . . . . . . . 10 (if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ ∧ 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏)))
436428, 430, 434, 435syl3anbrc 1344 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
437436adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
438 fveq2 6840 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑐) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
439438eleq1d 2813 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((𝑆𝑐) ∈ ℂ ↔ (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ))
440438fvoveq1d 7391 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑐) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
441440breq1d 5112 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
442439, 441anbi12d 632 . . . . . . . . 9 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ↔ ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))))
443442rspccva 3584 . . . . . . . 8 ((∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏)) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
444427, 437, 443syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
445444simprd 495 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))
446 fveq2 6840 . . . . . . . . 9 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑗) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
447446fvoveq1d 7391 . . . . . . . 8 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
448447breq1d 5112 . . . . . . 7 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
449448rspcev 3585 . . . . . 6 ((if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁) ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
450426, 445, 449syl2anc 584 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
451 ax-resscn 11101 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
452451a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
45326, 452fssd 6687 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
454 dvcn 25799 . . . . . . . . . . . . . 14 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
455452, 453, 153, 109, 454syl31anc 1375 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
456 cncfcdm 24767 . . . . . . . . . . . . 13 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
457452, 455, 456syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
45826, 457mpbird 257 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
459 ioodvbdlimc1lem2.r . . . . . . . . . . . 12 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗)))
460105, 459fmptd 7068 . . . . . . . . . . 11 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
461 eqid 2729 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
462 climrel 15434 . . . . . . . . . . . . 13 Rel ⇝
463462a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ⇝ )
464 fvex 6853 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ∈ V
465464mptex 7179 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ∈ V
466465a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ∈ V)
467 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐴))
468 eqidd 2730 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑚) → 𝐴 = 𝐴)
469 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
4707adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
471467, 468, 469, 470fvmptd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑚) = 𝐴)
47223, 141, 466, 98, 471climconst 15485 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ⇝ 𝐴)
473464mptex 7179 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗))) ∈ V
474459, 473eqeltri 2824 . . . . . . . . . . . . . . 15 𝑅 ∈ V
475474a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ V)
476 1cnd 11145 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
477 elnnnn0b 12462 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0 ∧ 0 < 𝑀))
47821, 67, 477sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
479 divcnvg 45598 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
480476, 478, 479syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
481 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐴))
482 eqidd 2730 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → 𝐴 = 𝐴)
483 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
485481, 482, 483, 484fvmptd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) = 𝐴)
48698adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
487485, 486eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) ∈ ℂ)
488 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) = (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)))
489 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (1 / 𝑗) = (1 / 𝑖))
490489adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → (1 / 𝑗) = (1 / 𝑖))
4913, 483sselid 3941 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
492 0red 11153 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
49362adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
49467adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑀)
495 eluzle 12782 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
496495adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
497492, 493, 491, 494, 496ltletrd 11310 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑖)
498497gt0ne0d 11718 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≠ 0)
499491, 498rereccld 11985 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℝ)
500488, 490, 483, 499fvmptd 6957 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) = (1 / 𝑖))
501491recnd 11178 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℂ)
502501, 498reccld 11927 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℂ)
503500, 502eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) ∈ ℂ)
504489oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝐴 + (1 / 𝑗)) = (𝐴 + (1 / 𝑖)))
505484, 499readdcld 11179 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑖)) ∈ ℝ)
506459, 504, 483, 505fvmptd3 6973 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (𝐴 + (1 / 𝑖)))
507485, 500oveq12d 7387 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) + ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)) = (𝐴 + (1 / 𝑖)))
508506, 507eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) + ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)))
50923, 141, 472, 475, 480, 487, 503, 508climadd 15574 . . . . . . . . . . . . 13 (𝜑𝑅 ⇝ (𝐴 + 0))
51098addridd 11350 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 0) = 𝐴)
511509, 510breqtrd 5128 . . . . . . . . . . . 12 (𝜑𝑅𝐴)
512 releldm 5897 . . . . . . . . . . . 12 ((Rel ⇝ ∧ 𝑅𝐴) → 𝑅 ∈ dom ⇝ )
513463, 511, 512syl2anc 584 . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
514 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
515 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → (𝑅𝑙) = (𝑅𝑘))
516515oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑘 → ((𝑅) − (𝑅𝑙)) = ((𝑅) − (𝑅𝑘)))
517516fveq2d 6844 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (abs‘((𝑅) − (𝑅𝑙))) = (abs‘((𝑅) − (𝑅𝑘))))
518517breq1d 5112 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → ((abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
519514, 518raleqbidv 3316 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
520519cbvrabv 3413 . . . . . . . . . . . . 13 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
521 fveq2 6840 . . . . . . . . . . . . . . . . . 18 ( = 𝑖 → (𝑅) = (𝑅𝑖))
522521fvoveq1d 7391 . . . . . . . . . . . . . . . . 17 ( = 𝑖 → (abs‘((𝑅) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝑘))))
523522breq1d 5112 . . . . . . . . . . . . . . . 16 ( = 𝑖 → ((abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
524523cbvralvw 3213 . . . . . . . . . . . . . . 15 (∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
525524rgenw 3048 . . . . . . . . . . . . . 14 𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
526 rabbi 3433 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) ↔ {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
527525, 526mpbi 230 . . . . . . . . . . . . 13 {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
528520, 527eqtri 2752 . . . . . . . . . . . 12 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
529528infeq1i 9406 . . . . . . . . . . 11 inf({𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
5307, 6, 9, 458, 109, 110, 22, 460, 461, 513, 529ioodvbdlimc1lem1 45902 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) ⇝ (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
531459fvmpt2 6961 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐴 + (1 / 𝑗)) ∈ ℝ) → (𝑅𝑗) = (𝐴 + (1 / 𝑗)))
532113, 58, 531syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) = (𝐴 + (1 / 𝑗)))
533532eqcomd 2735 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) = (𝑅𝑗))
534533fveq2d 6844 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐴 + (1 / 𝑗))) = (𝐹‘(𝑅𝑗)))
535534mpteq2dva 5195 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
536107, 535eqtrid 2776 . . . . . . . . . 10 (𝜑𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
537536fveq2d 6844 . . . . . . . . . 10 (𝜑 → (lim sup‘𝑆) = (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
538530, 536, 5373brtr4d 5134 . . . . . . . . 9 (𝜑𝑆 ⇝ (lim sup‘𝑆))
539464mptex 7179 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) ∈ V
540107, 539eqeltri 2824 . . . . . . . . . . 11 𝑆 ∈ V
541540a1i 11 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
542 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑐 ∈ ℤ) → (𝑆𝑐) = (𝑆𝑐))
543541, 542clim 15436 . . . . . . . . 9 (𝜑 → (𝑆 ⇝ (lim sup‘𝑆) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))))
544538, 543mpbid 232 . . . . . . . 8 (𝜑 → ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎)))
545544simprd 495 . . . . . . 7 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
546545adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
547 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
548547rphalfcld 12983 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
549 breq2 5106 . . . . . . . . 9 (𝑎 = (𝑥 / 2) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎 ↔ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
550549anbi2d 630 . . . . . . . 8 (𝑎 = (𝑥 / 2) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
551550rexralbidv 3201 . . . . . . 7 (𝑎 = (𝑥 / 2) → (∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
552551rspccva 3584 . . . . . 6 ((∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ∧ (𝑥 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
553546, 548, 552syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
554450, 553r19.29a 3141 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
555404, 554r19.29a 3141 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
556555ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
557 ioosscn 13345 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
558557a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
559453, 558, 98ellimc3 25756 . 2 (𝜑 → ((lim sup‘𝑆) ∈ (𝐹 lim 𝐴) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))))
560136, 556, 559mpbir2and 713 1 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  c0 4292  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  Rel wrel 5636  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  (,)cioo 13282  cfl 13728  abscabs 15176  lim supclsp 15412  cli 15426  cnccncf 24745   lim climc 25739   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  ioodvbdlimc1  45904
  Copyright terms: Public domain W3C validator