Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc1lem2 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc1lem2 45909
Description: Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc1lem2.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc1lem2.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc1lem2.altb (𝜑𝐴 < 𝐵)
ioodvbdlimc1lem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
ioodvbdlimc1lem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc1lem2.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
ioodvbdlimc1lem2.y 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
ioodvbdlimc1lem2.m 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
ioodvbdlimc1lem2.s 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))
ioodvbdlimc1lem2.r 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗)))
ioodvbdlimc1lem2.n 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
ioodvbdlimc1lem2.ch (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
Assertion
Ref Expression
ioodvbdlimc1lem2 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐴))
Distinct variable groups:   𝑥,𝑌   𝜑,𝑧   𝑅,𝑗,𝑥,𝑦   𝑗,𝑁,𝑧   𝑥,𝑀,𝑦,𝑗   𝑦,𝐴,𝑧   𝑦,𝑆,𝑧   𝑧,𝐵   𝑗,𝐹,𝑥   𝐵,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦   𝑆,𝑗   𝑦,𝐹,𝑧,𝑥   𝐴,𝑗,𝑥   𝑥,𝑆
Allowed substitution hints:   𝜒(𝑥,𝑦,𝑧,𝑗)   𝑅(𝑧)   𝑀(𝑧)   𝑁(𝑥,𝑦)   𝑌(𝑦,𝑧,𝑗)

Proof of Theorem ioodvbdlimc1lem2
Dummy variables 𝑏 𝑘 𝑚 𝑤 𝑖 𝑙 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 12871 . . . . . 6 (ℤ𝑀) ⊆ ℤ
2 zssre 12593 . . . . . 6 ℤ ⊆ ℝ
31, 2sstri 3968 . . . . 5 (ℤ𝑀) ⊆ ℝ
43a1i 11 . . . 4 (𝜑 → (ℤ𝑀) ⊆ ℝ)
5 ioodvbdlimc1lem2.m . . . . . . 7 𝑀 = ((⌊‘(1 / (𝐵𝐴))) + 1)
6 ioodvbdlimc1lem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
7 ioodvbdlimc1lem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
86, 7resubcld 11663 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
9 ioodvbdlimc1lem2.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
107, 6posdifd 11822 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
119, 10mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1211gt0ne0d 11799 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ≠ 0)
138, 12rereccld 12066 . . . . . . . . 9 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ)
14 0red 11236 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
158, 11recgt0d 12174 . . . . . . . . . 10 (𝜑 → 0 < (1 / (𝐵𝐴)))
1614, 13, 15ltled 11381 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / (𝐵𝐴)))
17 flge0nn0 13835 . . . . . . . . 9 (((1 / (𝐵𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝐵𝐴))) → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
1813, 16, 17syl2anc 584 . . . . . . . 8 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℕ0)
19 peano2nn0 12539 . . . . . . . 8 ((⌊‘(1 / (𝐵𝐴))) ∈ ℕ0 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
2018, 19syl 17 . . . . . . 7 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℕ0)
215, 20eqeltrid 2838 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
2221nn0zd 12612 . . . . 5 (𝜑𝑀 ∈ ℤ)
23 eqid 2735 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
2423uzsup 13878 . . . . 5 (𝑀 ∈ ℤ → sup((ℤ𝑀), ℝ*, < ) = +∞)
2522, 24syl 17 . . . 4 (𝜑 → sup((ℤ𝑀), ℝ*, < ) = +∞)
26 ioodvbdlimc1lem2.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2726adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
287rexrd 11283 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
2928adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ*)
306rexrd 11283 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3130adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ*)
327adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
33 eluzelre 12861 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℝ)
3433adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ)
35 0red 11236 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
36 0red 11236 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 0 ∈ ℝ)
37 1red 11234 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℝ)
3836, 37readdcld 11262 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (0 + 1) ∈ ℝ)
3938adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ∈ ℝ)
4036ltp1d 12170 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 0 < (0 + 1))
4140adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < (0 + 1))
42 eluzel2 12855 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
4342zred 12695 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4443adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
4513flcld 13813 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℤ)
4645zred 12695 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘(1 / (𝐵𝐴))) ∈ ℝ)
47 1red 11234 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℝ)
4818nn0ge0d 12563 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (⌊‘(1 / (𝐵𝐴))))
4914, 46, 47, 48leadd1dd 11849 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ≤ ((⌊‘(1 / (𝐵𝐴))) + 1))
5049, 5breqtrrdi 5161 . . . . . . . . . . . . 13 (𝜑 → (0 + 1) ≤ 𝑀)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑀)
52 eluzle 12863 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀𝑗)
5352adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀𝑗)
5439, 44, 34, 51, 53letrd 11390 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝑀)) → (0 + 1) ≤ 𝑗)
5535, 39, 34, 41, 54ltletrd 11393 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 < 𝑗)
5655gt0ne0d 11799 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ≠ 0)
5734, 56rereccld 12066 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ)
5832, 57readdcld 11262 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ ℝ)
5934, 55elrpd 13046 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ ℝ+)
6059rpreccld 13059 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ∈ ℝ+)
6132, 60ltaddrpd 13082 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐴 < (𝐴 + (1 / 𝑗)))
6221nn0red 12561 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
6314, 47readdcld 11262 . . . . . . . . . . . . . 14 (𝜑 → (0 + 1) ∈ ℝ)
6446, 47readdcld 11262 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ)
6514ltp1d 12170 . . . . . . . . . . . . . 14 (𝜑 → 0 < (0 + 1))
6614, 63, 64, 65, 49ltletrd 11393 . . . . . . . . . . . . 13 (𝜑 → 0 < ((⌊‘(1 / (𝐵𝐴))) + 1))
6766, 5breqtrrdi 5161 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑀)
6867gt0ne0d 11799 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6962, 68rereccld 12066 . . . . . . . . . 10 (𝜑 → (1 / 𝑀) ∈ ℝ)
7069adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑀) ∈ ℝ)
7132, 70readdcld 11262 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑀)) ∈ ℝ)
726adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝐵 ∈ ℝ)
7362, 67elrpd 13046 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
7473adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ+)
75 1red 11234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
76 0le1 11758 . . . . . . . . . . 11 0 ≤ 1
7776a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝑀)) → 0 ≤ 1)
7874, 59, 75, 77, 53lediv2ad 13071 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝑀)) → (1 / 𝑗) ≤ (1 / 𝑀))
7957, 70, 32, 78leadd2dd 11850 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ≤ (𝐴 + (1 / 𝑀)))
805eqcomi 2744 . . . . . . . . . . . . 13 ((⌊‘(1 / (𝐵𝐴))) + 1) = 𝑀
8180oveq2i 7414 . . . . . . . . . . . 12 (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) = (1 / 𝑀)
8281, 69eqeltrid 2838 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) ∈ ℝ)
8313, 15elrpd 13046 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) ∈ ℝ+)
8464, 66elrpd 13046 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℝ+)
85 1rp 13010 . . . . . . . . . . . . . 14 1 ∈ ℝ+
8685a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ+)
87 fllelt 13812 . . . . . . . . . . . . . . 15 ((1 / (𝐵𝐴)) ∈ ℝ → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) ≤ (1 / (𝐵𝐴)) ∧ (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1)))
8988simprd 495 . . . . . . . . . . . . 13 (𝜑 → (1 / (𝐵𝐴)) < ((⌊‘(1 / (𝐵𝐴))) + 1))
9083, 84, 86, 89ltdiv2dd 45271 . . . . . . . . . . . 12 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (1 / (1 / (𝐵𝐴))))
918recnd 11261 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) ∈ ℂ)
9291, 12recrecd 12012 . . . . . . . . . . . 12 (𝜑 → (1 / (1 / (𝐵𝐴))) = (𝐵𝐴))
9390, 92breqtrd 5145 . . . . . . . . . . 11 (𝜑 → (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)) < (𝐵𝐴))
9482, 8, 7, 93ltadd2dd 11392 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))) < (𝐴 + (𝐵𝐴)))
955oveq2i 7414 . . . . . . . . . . . 12 (1 / 𝑀) = (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))
9695oveq2i 7414 . . . . . . . . . . 11 (𝐴 + (1 / 𝑀)) = (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1)))
9796a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 𝑀)) = (𝐴 + (1 / ((⌊‘(1 / (𝐵𝐴))) + 1))))
987recnd 11261 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
996recnd 11261 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
10098, 99pncan3d 11595 . . . . . . . . . . 11 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
101100eqcomd 2741 . . . . . . . . . 10 (𝜑𝐵 = (𝐴 + (𝐵𝐴)))
10294, 97, 1013brtr4d 5151 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝑀)) < 𝐵)
103102adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑀)) < 𝐵)
10458, 71, 72, 79, 103lelttrd 11391 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) < 𝐵)
10529, 31, 58, 61, 104eliood 45475 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵))
10627, 105ffvelcdmd 7074 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ)
107 ioodvbdlimc1lem2.s . . . . 5 𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))
108106, 107fmptd 7103 . . . 4 (𝜑𝑆:(ℤ𝑀)⟶ℝ)
109 ioodvbdlimc1lem2.dmdv . . . . . 6 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
110 ioodvbdlimc1lem2.dvbd . . . . . 6 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
1117, 6, 9, 26, 109, 110dvbdfbdioo 45907 . . . . 5 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
11262adantr 480 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → 𝑀 ∈ ℝ)
113 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → 𝑗 ∈ (ℤ𝑀))
114107fvmpt2 6996 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ) → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
115113, 106, 114syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
116115fveq2d 6879 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
117116adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
118 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏)
119105adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵))
120 2fveq3 6880 . . . . . . . . . . . . . 14 (𝑥 = (𝐴 + (1 / 𝑗)) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))))
121120breq1d 5129 . . . . . . . . . . . . 13 (𝑥 = (𝐴 + (1 / 𝑗)) → ((abs‘(𝐹𝑥)) ≤ 𝑏 ↔ (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏))
122121rspccva 3600 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 ∧ (𝐴 + (1 / 𝑗)) ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏)
123118, 119, 122syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝐹‘(𝐴 + (1 / 𝑗)))) ≤ 𝑏)
124117, 123eqbrtrd 5141 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (abs‘(𝑆𝑗)) ≤ 𝑏)
125124a1d 25 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
126125ralrimiva 3132 . . . . . . . 8 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
127 breq1 5122 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘𝑗𝑀𝑗))
128127imbi1d 341 . . . . . . . . . 10 (𝑘 = 𝑀 → ((𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ (𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
129128ralbidv 3163 . . . . . . . . 9 (𝑘 = 𝑀 → (∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
130129rspcev 3601 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ∀𝑗 ∈ (ℤ𝑀)(𝑀𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
131112, 126, 130syl2anc 584 . . . . . . 7 ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
132131ex 412 . . . . . 6 (𝜑 → (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
133132reximdv 3155 . . . . 5 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑏 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏)))
134111, 133mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ (ℤ𝑀)(𝑘𝑗 → (abs‘(𝑆𝑗)) ≤ 𝑏))
1354, 25, 108, 134limsupre 45618 . . 3 (𝜑 → (lim sup‘𝑆) ∈ ℝ)
136135recnd 11261 . 2 (𝜑 → (lim sup‘𝑆) ∈ ℂ)
137 eluzelre 12861 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
138137adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ∈ ℝ)
139 0red 11236 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
14045peano2zd 12698 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘(1 / (𝐵𝐴))) + 1) ∈ ℤ)
1415, 140eqeltrid 2838 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
142141adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
143142zred 12695 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℝ)
144143adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀 ∈ ℝ)
14567ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑀)
146 ioodvbdlimc1lem2.n . . . . . . . . . . . . . 14 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀)
147 ioodvbdlimc1lem2.y . . . . . . . . . . . . . . . . . . . 20 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
148 ioomidp 45491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
1497, 6, 9, 148syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
150 ne0i 4316 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
151149, 150syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
152 ioossre 13422 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴(,)𝐵) ⊆ ℝ
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
154 dvfre 25905 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
15526, 153, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
156109feq2d 6691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ))
157155, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ)
158157ffvelcdmda 7073 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
159158recnd 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
160159abscld 15453 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ)
161 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
162 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
163151, 160, 110, 161, 162suprnmpt 45146 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )))
164163simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ)
165147, 164eqeltrid 2838 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ∈ ℝ)
166165adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑌 ∈ ℝ)
167 rpre 13015 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
168167rehalfcld 12486 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ)
169168adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
170167recnd 11261 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
171170adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
172 2cnd 12316 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
173 rpne0 13023 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ+𝑥 ≠ 0)
174173adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
175 2ne0 12342 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
176175a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
177171, 172, 174, 176divne0d 12031 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ≠ 0)
178166, 169, 177redivcld 12067 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
179178flcld 13813 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
180179peano2zd 12698 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
181180, 142ifcld 4547 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
182146, 181eqeltrid 2838 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
183182zred 12695 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℝ)
184183adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
185180zred 12695 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
186 max1 13199 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
187143, 185, 186syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
188187, 146breqtrrdi 5161 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑁)
189188adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑁)
190 eluzle 12863 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑁) → 𝑁𝑗)
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑁𝑗)
192144, 184, 138, 189, 191letrd 11390 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑀𝑗)
193139, 144, 138, 145, 192ltletrd 11393 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < 𝑗)
194193gt0ne0d 11799 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 𝑗 ≠ 0)
195138, 194rereccld 12066 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ)
196138, 193recgt0d 12174 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → 0 < (1 / 𝑗))
197195, 196elrpd 13046 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) → (1 / 𝑗) ∈ ℝ+)
198197adantr 480 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → (1 / 𝑗) ∈ ℝ+)
199 ioodvbdlimc1lem2.ch . . . . . . . . 9 (𝜒 ↔ (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
200199biimpi 216 . . . . . . . . . . . . . . . . 17 (𝜒 → (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)))
201 simp-5l 784 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝜑)
202200, 201syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
203202, 26syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:(𝐴(,)𝐵)⟶ℝ)
204200simplrd 769 . . . . . . . . . . . . . . 15 (𝜒𝑧 ∈ (𝐴(,)𝐵))
205203, 204ffvelcdmd 7074 . . . . . . . . . . . . . 14 (𝜒 → (𝐹𝑧) ∈ ℝ)
206205recnd 11261 . . . . . . . . . . . . 13 (𝜒 → (𝐹𝑧) ∈ ℂ)
207202, 108syl 17 . . . . . . . . . . . . . . 15 (𝜒𝑆:(ℤ𝑀)⟶ℝ)
208 simp-5r 785 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝑥 ∈ ℝ+)
209200, 208syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑥 ∈ ℝ+)
210 eluz2 12856 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
211142, 182, 188, 210syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑀))
212202, 209, 211syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜒𝑁 ∈ (ℤ𝑀))
213 uzss 12873 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
214212, 213syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → (ℤ𝑁) ⊆ (ℤ𝑀))
215 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → 𝑗 ∈ (ℤ𝑁))
216200, 215syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑗 ∈ (ℤ𝑁))
217214, 216sseldd 3959 . . . . . . . . . . . . . . 15 (𝜒𝑗 ∈ (ℤ𝑀))
218207, 217ffvelcdmd 7074 . . . . . . . . . . . . . 14 (𝜒 → (𝑆𝑗) ∈ ℝ)
219218recnd 11261 . . . . . . . . . . . . 13 (𝜒 → (𝑆𝑗) ∈ ℂ)
220202, 136syl 17 . . . . . . . . . . . . 13 (𝜒 → (lim sup‘𝑆) ∈ ℂ)
221206, 219, 220npncand 11616 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) = ((𝐹𝑧) − (lim sup‘𝑆)))
222221eqcomd 2741 . . . . . . . . . . 11 (𝜒 → ((𝐹𝑧) − (lim sup‘𝑆)) = (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))))
223222fveq2d 6879 . . . . . . . . . 10 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) = (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))))
224205, 218resubcld 11663 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℝ)
225202, 135syl 17 . . . . . . . . . . . . . . 15 (𝜒 → (lim sup‘𝑆) ∈ ℝ)
226218, 225resubcld 11663 . . . . . . . . . . . . . 14 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℝ)
227224, 226readdcld 11262 . . . . . . . . . . . . 13 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
228227recnd 11261 . . . . . . . . . . . 12 (𝜒 → (((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℂ)
229228abscld 15453 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
230224recnd 11261 . . . . . . . . . . . . 13 (𝜒 → ((𝐹𝑧) − (𝑆𝑗)) ∈ ℂ)
231230abscld 15453 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ∈ ℝ)
232226recnd 11261 . . . . . . . . . . . . 13 (𝜒 → ((𝑆𝑗) − (lim sup‘𝑆)) ∈ ℂ)
233232abscld 15453 . . . . . . . . . . . 12 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) ∈ ℝ)
234231, 233readdcld 11262 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) ∈ ℝ)
235209rpred 13049 . . . . . . . . . . 11 (𝜒𝑥 ∈ ℝ)
236230, 232abstrid 15473 . . . . . . . . . . 11 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) ≤ ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))))
237235rehalfcld 12486 . . . . . . . . . . . . 13 (𝜒 → (𝑥 / 2) ∈ ℝ)
238206, 219abssubd 15470 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) = (abs‘((𝑆𝑗) − (𝐹𝑧))))
239202, 217, 115syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑆𝑗) = (𝐹‘(𝐴 + (1 / 𝑗))))
240239fvoveq1d 7425 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝑆𝑗) − (𝐹𝑧))) = (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))))
241202, 217, 106syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐹‘(𝐴 + (1 / 𝑗))) ∈ ℝ)
242241, 205resubcld 11663 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧)) ∈ ℝ)
243242recnd 11261 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧)) ∈ ℂ)
244243abscld 15453 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ∈ ℝ)
245202, 165syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑌 ∈ ℝ)
246202, 217, 58syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐴 + (1 / 𝑗)) ∈ ℝ)
247152, 204sselid 3956 . . . . . . . . . . . . . . . . . 18 (𝜒𝑧 ∈ ℝ)
248246, 247resubcld 11663 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) ∈ ℝ)
249245, 248remulcld 11263 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ∈ ℝ)
250202, 7syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐴 ∈ ℝ)
251202, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐵 ∈ ℝ)
252202, 109syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
253163simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
254147breq2i 5127 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
255254ralbii 3082 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))
256253, 255sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
257202, 256syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
258 2fveq3 6880 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑤)) = (abs‘((ℝ D 𝐹)‘𝑥)))
259258breq1d 5129 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌))
260259cbvralvw 3220 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌 ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑌)
261257, 260sylibr 234 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑤 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑤)) ≤ 𝑌)
262247rexrd 11283 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ*)
263202, 30syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐵 ∈ ℝ*)
264247, 250resubcld 11663 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐴) ∈ ℝ)
265264recnd 11261 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑧𝐴) ∈ ℂ)
266265abscld 15453 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝑧𝐴)) ∈ ℝ)
2673, 217sselid 3956 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ∈ ℝ)
268202, 217, 56syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑗 ≠ 0)
269267, 268rereccld 12066 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ∈ ℝ)
270264leabsd 15431 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑧𝐴) ≤ (abs‘(𝑧𝐴)))
271200simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (abs‘(𝑧𝐴)) < (1 / 𝑗))
272264, 266, 269, 270, 271lelttrd 11391 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑧𝐴) < (1 / 𝑗))
273247, 250, 269ltsubadd2d 11833 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑧𝐴) < (1 / 𝑗) ↔ 𝑧 < (𝐴 + (1 / 𝑗))))
274272, 273mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 < (𝐴 + (1 / 𝑗)))
275202, 217, 104syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝐴 + (1 / 𝑗)) < 𝐵)
276262, 263, 246, 274, 275eliood 45475 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐴 + (1 / 𝑗)) ∈ (𝑧(,)𝐵))
277250, 251, 203, 252, 245, 261, 204, 276dvbdfbdioolem1 45905 . . . . . . . . . . . . . . . . 17 (𝜒 → ((abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ∧ (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · (𝐵𝐴))))
278277simpld 494 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)))
279202, 217, 57syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (1 / 𝑗) ∈ ℝ)
280245, 279remulcld 11263 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · (1 / 𝑗)) ∈ ℝ)
281157, 149ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
282281recnd 11261 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
283282abscld 15453 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
284282absge0d 15461 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
285 2fveq3 6880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
286147eqcomi 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝐴 + 𝐵) / 2) → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = 𝑌)
288285, 287breq12d 5132 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌))
289288rspcva 3599 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
290149, 253, 289syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝑌)
29114, 283, 165, 284, 290letrd 11390 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 𝑌)
292202, 291syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ≤ 𝑌)
293202, 28syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝐴 ∈ ℝ*)
294 ioogtlb 45472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
295293, 263, 204, 294syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝐴 < 𝑧)
296250, 247, 246, 295ltsub2dd 11848 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) < ((𝐴 + (1 / 𝑗)) − 𝐴))
297202, 98syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝐴 ∈ ℂ)
298279recnd 11261 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (1 / 𝑗) ∈ ℂ)
299297, 298pncan2d 11594 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝐴) = (1 / 𝑗))
300296, 299breqtrd 5145 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) < (1 / 𝑗))
301248, 269, 300ltled 11381 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝐴 + (1 / 𝑗)) − 𝑧) ≤ (1 / 𝑗))
302248, 269, 245, 292, 301lemul2ad 12180 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ≤ (𝑌 · (1 / 𝑗)))
303280adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
304237adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑥 / 2) ∈ ℝ)
305 oveq1 7410 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 = 0 → (𝑌 · (1 / 𝑗)) = (0 · (1 / 𝑗)))
306298mul02d 11431 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (0 · (1 / 𝑗)) = 0)
307305, 306sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) = 0)
308209rphalfcld 13061 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑥 / 2) ∈ ℝ+)
309308rpgt0d 13052 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → 0 < (𝑥 / 2))
310309adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑌 = 0) → 0 < (𝑥 / 2))
311307, 310eqbrtrd 5141 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) < (𝑥 / 2))
312303, 304, 311ltled 11381 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
313245adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ∈ ℝ)
314292adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 ≤ 𝑌)
315 neqne 2940 . . . . . . . . . . . . . . . . . . . . 21 𝑌 = 0 → 𝑌 ≠ 0)
316315adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ ¬ 𝑌 = 0) → 𝑌 ≠ 0)
317313, 314, 316ne0gt0d 11370 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ¬ 𝑌 = 0) → 0 < 𝑌)
318280adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ∈ ℝ)
3193, 212sselid 3956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ∈ ℝ)
320 0red 11236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → 0 ∈ ℝ)
321202, 209, 143syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑀 ∈ ℝ)
322202, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → 0 < 𝑀)
323202, 209, 188syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑀𝑁)
324320, 321, 319, 322, 323ltletrd 11393 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → 0 < 𝑁)
325324gt0ne0d 11799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ≠ 0)
326319, 325rereccld 12066 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (1 / 𝑁) ∈ ℝ)
327245, 326remulcld 11263 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑌 · (1 / 𝑁)) ∈ ℝ)
328327adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ∈ ℝ)
329237adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℝ)
330279adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ∈ ℝ)
331326adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ∈ ℝ)
332245adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℝ)
333292adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 𝑌)
334319, 324elrpd 13046 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁 ∈ ℝ+)
335202, 217, 59syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑗 ∈ ℝ+)
336 1red 11234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 1 ∈ ℝ)
33776a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → 0 ≤ 1)
338216, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑁𝑗)
339334, 335, 336, 337, 338lediv2ad 13071 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (1 / 𝑗) ≤ (1 / 𝑁))
340339adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑗) ≤ (1 / 𝑁))
341330, 331, 332, 333, 340lemul2ad 12180 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑌 · (1 / 𝑁)))
342235recnd 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑥 ∈ ℂ)
343 2cnd 12316 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → 2 ∈ ℂ)
344209rpne0d 13054 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑥 ≠ 0)
345175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → 2 ≠ 0)
346342, 343, 344, 345divne0d 12031 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑥 / 2) ≠ 0)
347245, 237, 346redivcld 12067 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) ∈ ℝ)
348347adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ)
349 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒 ∧ 0 < 𝑌) → 0 < 𝑌)
350309adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑥 / 2))
351332, 329, 349, 350divgt0d 12175 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒 ∧ 0 < 𝑌) → 0 < (𝑌 / (𝑥 / 2)))
352348, 351elrpd 13046 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℝ+)
353352rprecred 13060 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (1 / (𝑌 / (𝑥 / 2))) ∈ ℝ)
354334adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑁 ∈ ℝ+)
355 1red 11234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 1 ∈ ℝ)
35676a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 0 ≤ 1)
357347flcld 13813 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → (⌊‘(𝑌 / (𝑥 / 2))) ∈ ℤ)
358357peano2zd 12698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℤ)
359358zred 12695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ)
360202, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜒𝑀 ∈ ℤ)
361358, 360ifcld 4547 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) ∈ ℤ)
362146, 361eqeltrid 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒𝑁 ∈ ℤ)
363362zred 12695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒𝑁 ∈ ℝ)
364 flltp1 13815 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑌 / (𝑥 / 2)) ∈ ℝ → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
365347, 364syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑌 / (𝑥 / 2)) < ((⌊‘(𝑌 / (𝑥 / 2))) + 1))
366202, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒𝑀 ∈ ℝ)
367 max2 13201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ∈ ℝ) → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
368366, 359, 367syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀))
369368, 146breqtrrdi 5161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ((⌊‘(𝑌 / (𝑥 / 2))) + 1) ≤ 𝑁)
370347, 359, 363, 365, 369ltletrd 11393 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑌 / (𝑥 / 2)) < 𝑁)
371347, 319, 370ltled 11381 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
372371adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≤ 𝑁)
373352, 354, 355, 356, 372lediv2ad 13071 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (1 / 𝑁) ≤ (1 / (𝑌 / (𝑥 / 2))))
374331, 353, 332, 333, 373lemul2ad 12180 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
375332recnd 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ∈ ℂ)
376348recnd 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ∈ ℂ)
377351gt0ne0d 11799 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑥 / 2)) ≠ 0)
378375, 376, 377divrecd 12018 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑌 · (1 / (𝑌 / (𝑥 / 2)))))
379329recnd 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ∈ ℂ)
380349gt0ne0d 11799 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → 𝑌 ≠ 0)
381346adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒 ∧ 0 < 𝑌) → (𝑥 / 2) ≠ 0)
382375, 379, 380, 381ddcand 12035 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒 ∧ 0 < 𝑌) → (𝑌 / (𝑌 / (𝑥 / 2))) = (𝑥 / 2))
383378, 382eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / (𝑌 / (𝑥 / 2)))) = (𝑥 / 2))
384374, 383breqtrd 5145 . . . . . . . . . . . . . . . . . . . 20 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑁)) ≤ (𝑥 / 2))
385318, 328, 329, 341, 384letrd 11390 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ 0 < 𝑌) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
386317, 385syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ¬ 𝑌 = 0) → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
387312, 386pm2.61dan 812 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑌 · (1 / 𝑗)) ≤ (𝑥 / 2))
388249, 280, 237, 302, 387letrd 11390 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑌 · ((𝐴 + (1 / 𝑗)) − 𝑧)) ≤ (𝑥 / 2))
389244, 249, 237, 278, 388letrd 11390 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘((𝐹‘(𝐴 + (1 / 𝑗))) − (𝐹𝑧))) ≤ (𝑥 / 2))
390240, 389eqbrtrd 5141 . . . . . . . . . . . . . 14 (𝜒 → (abs‘((𝑆𝑗) − (𝐹𝑧))) ≤ (𝑥 / 2))
391238, 390eqbrtrd 5141 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝐹𝑧) − (𝑆𝑗))) ≤ (𝑥 / 2))
392 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
393200, 392syl 17 . . . . . . . . . . . . 13 (𝜒 → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
394231, 233, 237, 237, 391, 393leltaddd 11857 . . . . . . . . . . . 12 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < ((𝑥 / 2) + (𝑥 / 2)))
3953422halvesd 12485 . . . . . . . . . . . 12 (𝜒 → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
396394, 395breqtrd 5145 . . . . . . . . . . 11 (𝜒 → ((abs‘((𝐹𝑧) − (𝑆𝑗))) + (abs‘((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
397229, 234, 235, 236, 396lelttrd 11391 . . . . . . . . . 10 (𝜒 → (abs‘(((𝐹𝑧) − (𝑆𝑗)) + ((𝑆𝑗) − (lim sup‘𝑆)))) < 𝑥)
398223, 397eqbrtrd 5141 . . . . . . . . 9 (𝜒 → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
399199, 398sylbir 235 . . . . . . . 8 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
400399adantrl 716 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗))) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)
401400ex 412 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
402401ralrimiva 3132 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
403 brimralrspcev 5180 . . . . 5 (((1 / 𝑗) ∈ ℝ+ ∧ ∀𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < (1 / 𝑗)) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
404198, 402, 403syl2anc 584 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ𝑁)) ∧ (abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
405 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑏𝑁)
406405iftrued 4508 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑁)
407 uzid 12865 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
408182, 407syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ𝑁))
409408adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → 𝑁 ∈ (ℤ𝑁))
410406, 409eqeltrd 2834 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
411410adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
412 iffalse 4509 . . . . . . . . . 10 𝑏𝑁 → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
413412adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) = 𝑏)
414182ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℤ)
415 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℤ)
416414zred 12695 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 ∈ ℝ)
417415zred 12695 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ ℝ)
418 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → ¬ 𝑏𝑁)
419416, 417ltnled 11380 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → (𝑁 < 𝑏 ↔ ¬ 𝑏𝑁))
420418, 419mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁 < 𝑏)
421416, 417, 420ltled 11381 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑁𝑏)
422 eluz2 12856 . . . . . . . . . 10 (𝑏 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁𝑏))
423414, 415, 421, 422syl3anbrc 1344 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → 𝑏 ∈ (ℤ𝑁))
424413, 423eqeltrd 2834 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ¬ 𝑏𝑁) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
425411, 424pm2.61dan 812 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
426425adantr 480 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁))
427 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
428 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
429182adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
430429, 428ifcld 4547 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ)
431428zred 12695 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℝ)
432429zred 12695 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℝ)
433 max1 13199 . . . . . . . . . . 11 ((𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
434431, 432, 433syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏))
435 eluz2 12856 . . . . . . . . . 10 (if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ ℤ ∧ 𝑏 ≤ if(𝑏𝑁, 𝑁, 𝑏)))
436428, 430, 434, 435syl3anbrc 1344 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
437436adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏))
438 fveq2 6875 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑐) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
439438eleq1d 2819 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((𝑆𝑐) ∈ ℂ ↔ (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ))
440438fvoveq1d 7425 . . . . . . . . . . 11 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑐) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
441440breq1d 5129 . . . . . . . . . 10 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
442439, 441anbi12d 632 . . . . . . . . 9 (𝑐 = if(𝑏𝑁, 𝑁, 𝑏) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ↔ ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))))
443442rspccva 3600 . . . . . . . 8 ((∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑏)) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
444427, 437, 443syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) ∈ ℂ ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
445444simprd 495 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2))
446 fveq2 6875 . . . . . . . . 9 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (𝑆𝑗) = (𝑆‘if(𝑏𝑁, 𝑁, 𝑏)))
447446fvoveq1d 7425 . . . . . . . 8 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → (abs‘((𝑆𝑗) − (lim sup‘𝑆))) = (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))))
448447breq1d 5129 . . . . . . 7 (𝑗 = if(𝑏𝑁, 𝑁, 𝑏) → ((abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2) ↔ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)))
449448rspcev 3601 . . . . . 6 ((if(𝑏𝑁, 𝑁, 𝑏) ∈ (ℤ𝑁) ∧ (abs‘((𝑆‘if(𝑏𝑁, 𝑁, 𝑏)) − (lim sup‘𝑆))) < (𝑥 / 2)) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
450426, 445, 449syl2anc 584 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑏 ∈ ℤ) ∧ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
451 ax-resscn 11184 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
452451a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
45326, 452fssd 6722 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
454 dvcn 25873 . . . . . . . . . . . . . 14 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐴(,)𝐵) ⊆ ℝ) ∧ dom (ℝ D 𝐹) = (𝐴(,)𝐵)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
455452, 453, 153, 109, 454syl31anc 1375 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
456 cncfcdm 24840 . . . . . . . . . . . . 13 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
457452, 455, 456syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ 𝐹:(𝐴(,)𝐵)⟶ℝ))
45826, 457mpbird 257 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ))
459 ioodvbdlimc1lem2.r . . . . . . . . . . . 12 𝑅 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗)))
460105, 459fmptd 7103 . . . . . . . . . . 11 (𝜑𝑅:(ℤ𝑀)⟶(𝐴(,)𝐵))
461 eqid 2735 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))
462 climrel 15506 . . . . . . . . . . . . 13 Rel ⇝
463462a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ⇝ )
464 fvex 6888 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ∈ V
465464mptex 7214 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ∈ V
466465a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ∈ V)
467 eqidd 2736 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐴))
468 eqidd 2736 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑚) → 𝐴 = 𝐴)
469 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
4707adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
471467, 468, 469, 470fvmptd 6992 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑚) = 𝐴)
47223, 141, 466, 98, 471climconst 15557 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) ⇝ 𝐴)
473464mptex 7214 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑀) ↦ (𝐴 + (1 / 𝑗))) ∈ V
474459, 473eqeltri 2830 . . . . . . . . . . . . . . 15 𝑅 ∈ V
475474a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ V)
476 1cnd 11228 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
477 elnnnn0b 12543 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0 ∧ 0 < 𝑀))
47821, 67, 477sylanbrc 583 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ)
479 divcnvg 45604 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
480476, 478, 479syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) ⇝ 0)
481 eqidd 2736 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ 𝐴) = (𝑗 ∈ (ℤ𝑀) ↦ 𝐴))
482 eqidd 2736 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → 𝐴 = 𝐴)
483 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ (ℤ𝑀))
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
485481, 482, 483, 484fvmptd 6992 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) = 𝐴)
48698adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
487485, 486eqeltrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) ∈ ℂ)
488 eqidd 2736 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)) = (𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗)))
489 oveq2 7411 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → (1 / 𝑗) = (1 / 𝑖))
490489adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (ℤ𝑀)) ∧ 𝑗 = 𝑖) → (1 / 𝑗) = (1 / 𝑖))
4913, 483sselid 3956 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℝ)
492 0red 11236 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
49362adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
49467adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑀)
495 eluzle 12863 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ𝑀) → 𝑀𝑖)
496495adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑀𝑖)
497492, 493, 491, 494, 496ltletrd 11393 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (ℤ𝑀)) → 0 < 𝑖)
498497gt0ne0d 11799 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ≠ 0)
499491, 498rereccld 12066 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℝ)
500488, 490, 483, 499fvmptd 6992 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) = (1 / 𝑖))
501491recnd 11261 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℂ)
502501, 498reccld 12008 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (1 / 𝑖) ∈ ℂ)
503500, 502eqeltrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖) ∈ ℂ)
504489oveq2d 7419 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → (𝐴 + (1 / 𝑗)) = (𝐴 + (1 / 𝑖)))
505484, 499readdcld 11262 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑖)) ∈ ℝ)
506459, 504, 483, 505fvmptd3 7008 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (𝐴 + (1 / 𝑖)))
507485, 500oveq12d 7421 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (ℤ𝑀)) → (((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) + ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)) = (𝐴 + (1 / 𝑖)))
508506, 507eqtr4d 2773 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (ℤ𝑀)) → (𝑅𝑖) = (((𝑗 ∈ (ℤ𝑀) ↦ 𝐴)‘𝑖) + ((𝑗 ∈ (ℤ𝑀) ↦ (1 / 𝑗))‘𝑖)))
50923, 141, 472, 475, 480, 487, 503, 508climadd 15646 . . . . . . . . . . . . 13 (𝜑𝑅 ⇝ (𝐴 + 0))
51098addridd 11433 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 0) = 𝐴)
511509, 510breqtrd 5145 . . . . . . . . . . . 12 (𝜑𝑅𝐴)
512 releldm 5924 . . . . . . . . . . . 12 ((Rel ⇝ ∧ 𝑅𝐴) → 𝑅 ∈ dom ⇝ )
513463, 511, 512syl2anc 584 . . . . . . . . . . 11 (𝜑𝑅 ∈ dom ⇝ )
514 fveq2 6875 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
515 fveq2 6875 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → (𝑅𝑙) = (𝑅𝑘))
516515oveq2d 7419 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑘 → ((𝑅) − (𝑅𝑙)) = ((𝑅) − (𝑅𝑘)))
517516fveq2d 6879 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (abs‘((𝑅) − (𝑅𝑙))) = (abs‘((𝑅) − (𝑅𝑘))))
518517breq1d 5129 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → ((abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
519514, 518raleqbidv 3325 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
520519cbvrabv 3426 . . . . . . . . . . . . 13 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
521 fveq2 6875 . . . . . . . . . . . . . . . . . 18 ( = 𝑖 → (𝑅) = (𝑅𝑖))
522521fvoveq1d 7425 . . . . . . . . . . . . . . . . 17 ( = 𝑖 → (abs‘((𝑅) − (𝑅𝑘))) = (abs‘((𝑅𝑖) − (𝑅𝑘))))
523522breq1d 5129 . . . . . . . . . . . . . . . 16 ( = 𝑖 → ((abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ (abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))))
524523cbvralvw 3220 . . . . . . . . . . . . . . 15 (∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
525524rgenw 3055 . . . . . . . . . . . . . 14 𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))
526 rabbi 3446 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑀)(∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) ↔ {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))})
527525, 526mpbi 230 . . . . . . . . . . . . 13 {𝑘 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑘)(abs‘((𝑅) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
528520, 527eqtri 2758 . . . . . . . . . . . 12 {𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} = {𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}
529528infeq1i 9489 . . . . . . . . . . 11 inf({𝑙 ∈ (ℤ𝑀) ∣ ∀ ∈ (ℤ𝑙)(abs‘((𝑅) − (𝑅𝑙))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) = inf({𝑘 ∈ (ℤ𝑀) ∣ ∀𝑖 ∈ (ℤ𝑘)(abs‘((𝑅𝑖) − (𝑅𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
5307, 6, 9, 458, 109, 110, 22, 460, 461, 513, 529ioodvbdlimc1lem1 45908 . . . . . . . . . 10 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))) ⇝ (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
531459fvmpt2 6996 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℤ𝑀) ∧ (𝐴 + (1 / 𝑗)) ∈ ℝ) → (𝑅𝑗) = (𝐴 + (1 / 𝑗)))
532113, 58, 531syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝑅𝑗) = (𝐴 + (1 / 𝑗)))
533532eqcomd 2741 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐴 + (1 / 𝑗)) = (𝑅𝑗))
534533fveq2d 6879 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝑀)) → (𝐹‘(𝐴 + (1 / 𝑗))) = (𝐹‘(𝑅𝑗)))
535534mpteq2dva 5214 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
536107, 535eqtrid 2782 . . . . . . . . . 10 (𝜑𝑆 = (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗))))
537536fveq2d 6879 . . . . . . . . . 10 (𝜑 → (lim sup‘𝑆) = (lim sup‘(𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝑅𝑗)))))
538530, 536, 5373brtr4d 5151 . . . . . . . . 9 (𝜑𝑆 ⇝ (lim sup‘𝑆))
539464mptex 7214 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) ∈ V
540107, 539eqeltri 2830 . . . . . . . . . . 11 𝑆 ∈ V
541540a1i 11 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
542 eqidd 2736 . . . . . . . . . 10 ((𝜑𝑐 ∈ ℤ) → (𝑆𝑐) = (𝑆𝑐))
543541, 542clim 15508 . . . . . . . . 9 (𝜑 → (𝑆 ⇝ (lim sup‘𝑆) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))))
544538, 543mpbid 232 . . . . . . . 8 (𝜑 → ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎)))
545544simprd 495 . . . . . . 7 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
546545adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎))
547 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
548547rphalfcld 13061 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
549 breq2 5123 . . . . . . . . 9 (𝑎 = (𝑥 / 2) → ((abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎 ↔ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
550549anbi2d 630 . . . . . . . 8 (𝑎 = (𝑥 / 2) → (((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
551550rexralbidv 3207 . . . . . . 7 (𝑎 = (𝑥 / 2) → (∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ↔ ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2))))
552551rspccva 3600 . . . . . 6 ((∀𝑎 ∈ ℝ+𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < 𝑎) ∧ (𝑥 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
553546, 548, 552syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℤ ∀𝑐 ∈ (ℤ𝑏)((𝑆𝑐) ∈ ℂ ∧ (abs‘((𝑆𝑐) − (lim sup‘𝑆))) < (𝑥 / 2)))
554450, 553r19.29a 3148 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ (ℤ𝑁)(abs‘((𝑆𝑗) − (lim sup‘𝑆))) < (𝑥 / 2))
555404, 554r19.29a 3148 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
556555ralrimiva 3132 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))
557 ioosscn 13423 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
558557a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
559453, 558, 98ellimc3 25830 . 2 (𝜑 → ((lim sup‘𝑆) ∈ (𝐹 lim 𝐴) ↔ ((lim sup‘𝑆) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧 ∈ (𝐴(,)𝐵)((𝑧𝐴 ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((𝐹𝑧) − (lim sup‘𝑆))) < 𝑥))))
560136, 556, 559mpbir2and 713 1 (𝜑 → (lim sup‘𝑆) ∈ (𝐹 lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  ifcif 4500   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  Rel wrel 5659  wf 6526  cfv 6530  (class class class)co 7403  supcsup 9450  infcinf 9451  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  0cn0 12499  cz 12586  cuz 12850  +crp 13006  (,)cioo 13360  cfl 13805  abscabs 15251  lim supclsp 15484  cli 15498  cnccncf 24818   lim climc 25813   D cdv 25814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818
This theorem is referenced by:  ioodvbdlimc1  45910
  Copyright terms: Public domain W3C validator