| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limcdm0 | Structured version Visualization version GIF version | ||
| Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| limcdm0.f | ⊢ (𝜑 → 𝐹:∅⟶ℂ) |
| limcdm0.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| limcdm0 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl 25804 | . . . . 5 ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ | |
| 2 | 1 | sseli 3930 | . . . 4 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ ℂ) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → 𝑥 ∈ ℂ) |
| 4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 5 | 1rp 12894 | . . . . . . 7 ⊢ 1 ∈ ℝ+ | |
| 6 | ral0 4463 | . . . . . . 7 ⊢ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) | |
| 7 | brimralrspcev 5152 | . . . . . . 7 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 1) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)) → ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . 6 ⊢ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) |
| 9 | 8 | rgenw 3051 | . . . . 5 ⊢ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)) |
| 11 | limcdm0.f | . . . . . 6 ⊢ (𝜑 → 𝐹:∅⟶ℂ) | |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐹:∅⟶ℂ) |
| 13 | 0ss 4350 | . . . . . 6 ⊢ ∅ ⊆ ℂ | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ∅ ⊆ ℂ) |
| 15 | limcdm0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ) |
| 17 | 12, 14, 16 | ellimc3 25808 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑧 ∈ ∅ ((𝑧 ≠ 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑤) → (abs‘((𝐹‘𝑧) − 𝑥)) < 𝑦)))) |
| 18 | 4, 10, 17 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ (𝐹 limℂ 𝐵)) |
| 19 | 3, 18 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ℂ)) |
| 20 | 19 | eqrdv 2729 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 < clt 11146 − cmin 11344 ℝ+crp 12890 abscabs 15141 limℂ climc 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cnp 23144 df-xms 24236 df-ms 24237 df-limc 25795 |
| This theorem is referenced by: ioodvbdlimc1 45977 ioodvbdlimc2 45979 |
| Copyright terms: Public domain | W3C validator |