Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brlb Structured version   Visualization version   GIF version

Theorem brlb 34915
Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.)
Hypotheses
Ref Expression
brub.1 𝑆 ∈ V
brub.2 𝐴 ∈ V
Assertion
Ref Expression
brlb (𝑆LB𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆

Proof of Theorem brlb
StepHypRef Expression
1 df-lb 34837 . . 3 LB𝑅 = UB𝑅
21breqi 5153 . 2 (𝑆LB𝑅𝐴𝑆UB𝑅𝐴)
3 brub.1 . . 3 𝑆 ∈ V
4 brub.2 . . 3 𝐴 ∈ V
53, 4brub 34914 . 2 (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
6 vex 3478 . . . 4 𝑥 ∈ V
76, 4brcnv 5880 . . 3 (𝑥𝑅𝐴𝐴𝑅𝑥)
87ralbii 3093 . 2 (∀𝑥𝑆 𝑥𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
92, 5, 83bitri 296 1 (𝑆LB𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wral 3061  Vcvv 3474   class class class wbr 5147  ccnv 5674  UBcub 34812  LBclb 34813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-eprel 5579  df-xp 5681  df-cnv 5683  df-co 5684  df-ub 34836  df-lb 34837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator