![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brlb | Structured version Visualization version GIF version |
Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
Ref | Expression |
---|---|
brub.1 | ⊢ 𝑆 ∈ V |
brub.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brlb | ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lb 35841 | . . 3 ⊢ LB𝑅 = UB◡𝑅 | |
2 | 1 | breqi 5172 | . 2 ⊢ (𝑆LB𝑅𝐴 ↔ 𝑆UB◡𝑅𝐴) |
3 | brub.1 | . . 3 ⊢ 𝑆 ∈ V | |
4 | brub.2 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 3, 4 | brub 35918 | . 2 ⊢ (𝑆UB◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴) |
6 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6, 4 | brcnv 5907 | . . 3 ⊢ (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥) |
8 | 7 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
9 | 2, 5, 8 | 3bitri 297 | 1 ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 ◡ccnv 5699 UBcub 35816 LBclb 35817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-cnv 5708 df-co 5709 df-ub 35840 df-lb 35841 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |