| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brlb | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| Ref | Expression |
|---|---|
| brub.1 | ⊢ 𝑆 ∈ V |
| brub.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| brlb | ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lb 35841 | . . 3 ⊢ LB𝑅 = UB◡𝑅 | |
| 2 | 1 | breqi 5125 | . 2 ⊢ (𝑆LB𝑅𝐴 ↔ 𝑆UB◡𝑅𝐴) |
| 3 | brub.1 | . . 3 ⊢ 𝑆 ∈ V | |
| 4 | brub.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 3, 4 | brub 35918 | . 2 ⊢ (𝑆UB◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴) |
| 6 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6, 4 | brcnv 5862 | . . 3 ⊢ (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥) |
| 8 | 7 | ralbii 3082 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| 9 | 2, 5, 8 | 3bitri 297 | 1 ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 class class class wbr 5119 ◡ccnv 5653 UBcub 35816 LBclb 35817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 df-xp 5660 df-cnv 5662 df-co 5663 df-ub 35840 df-lb 35841 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |