![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brlb | Structured version Visualization version GIF version |
Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
Ref | Expression |
---|---|
brub.1 | ⊢ 𝑆 ∈ V |
brub.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brlb | ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lb 34508 | . . 3 ⊢ LB𝑅 = UB◡𝑅 | |
2 | 1 | breqi 5112 | . 2 ⊢ (𝑆LB𝑅𝐴 ↔ 𝑆UB◡𝑅𝐴) |
3 | brub.1 | . . 3 ⊢ 𝑆 ∈ V | |
4 | brub.2 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 3, 4 | brub 34585 | . 2 ⊢ (𝑆UB◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴) |
6 | vex 3448 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6, 4 | brcnv 5839 | . . 3 ⊢ (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥) |
8 | 7 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
9 | 2, 5, 8 | 3bitri 297 | 1 ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 class class class wbr 5106 ◡ccnv 5633 UBcub 34483 LBclb 34484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-eprel 5538 df-xp 5640 df-cnv 5642 df-co 5643 df-ub 34507 df-lb 34508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |