![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brlb | Structured version Visualization version GIF version |
Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
Ref | Expression |
---|---|
brub.1 | ⊢ 𝑆 ∈ V |
brub.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brlb | ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lb 34837 | . . 3 ⊢ LB𝑅 = UB◡𝑅 | |
2 | 1 | breqi 5153 | . 2 ⊢ (𝑆LB𝑅𝐴 ↔ 𝑆UB◡𝑅𝐴) |
3 | brub.1 | . . 3 ⊢ 𝑆 ∈ V | |
4 | brub.2 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 3, 4 | brub 34914 | . 2 ⊢ (𝑆UB◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴) |
6 | vex 3478 | . . . 4 ⊢ 𝑥 ∈ V | |
7 | 6, 4 | brcnv 5880 | . . 3 ⊢ (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥) |
8 | 7 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
9 | 2, 5, 8 | 3bitri 296 | 1 ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 class class class wbr 5147 ◡ccnv 5674 UBcub 34812 LBclb 34813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 df-xp 5681 df-cnv 5683 df-co 5684 df-ub 34836 df-lb 34837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |