Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brlb Structured version   Visualization version   GIF version

Theorem brlb 32937
Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.)
Hypotheses
Ref Expression
brub.1 𝑆 ∈ V
brub.2 𝐴 ∈ V
Assertion
Ref Expression
brlb (𝑆LB𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆

Proof of Theorem brlb
StepHypRef Expression
1 df-lb 32859 . . 3 LB𝑅 = UB𝑅
21breqi 4929 . 2 (𝑆LB𝑅𝐴𝑆UB𝑅𝐴)
3 brub.1 . . 3 𝑆 ∈ V
4 brub.2 . . 3 𝐴 ∈ V
53, 4brub 32936 . 2 (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
6 vex 3412 . . . 4 𝑥 ∈ V
76, 4brcnv 5597 . . 3 (𝑥𝑅𝐴𝐴𝑅𝑥)
87ralbii 3109 . 2 (∀𝑥𝑆 𝑥𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
92, 5, 83bitri 289 1 (𝑆LB𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wcel 2050  wral 3082  Vcvv 3409   class class class wbr 4923  ccnv 5400  UBcub 32834  LBclb 32835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4924  df-opab 4986  df-eprel 5311  df-xp 5407  df-cnv 5409  df-co 5410  df-ub 32858  df-lb 32859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator