Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brlb Structured version   Visualization version   GIF version

Theorem brlb 35995
Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.)
Hypotheses
Ref Expression
brub.1 𝑆 ∈ V
brub.2 𝐴 ∈ V
Assertion
Ref Expression
brlb (𝑆LB𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅   𝑥,𝑆

Proof of Theorem brlb
StepHypRef Expression
1 df-lb 35917 . . 3 LB𝑅 = UB𝑅
21breqi 5097 . 2 (𝑆LB𝑅𝐴𝑆UB𝑅𝐴)
3 brub.1 . . 3 𝑆 ∈ V
4 brub.2 . . 3 𝐴 ∈ V
53, 4brub 35994 . 2 (𝑆UB𝑅𝐴 ↔ ∀𝑥𝑆 𝑥𝑅𝐴)
6 vex 3440 . . . 4 𝑥 ∈ V
76, 4brcnv 5822 . . 3 (𝑥𝑅𝐴𝐴𝑅𝑥)
87ralbii 3078 . 2 (∀𝑥𝑆 𝑥𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
92, 5, 83bitri 297 1 (𝑆LB𝑅𝐴 ↔ ∀𝑥𝑆 𝐴𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wral 3047  Vcvv 3436   class class class wbr 5091  ccnv 5615  UBcub 35892  LBclb 35893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-eprel 5516  df-xp 5622  df-cnv 5624  df-co 5625  df-ub 35916  df-lb 35917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator