| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brlb | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| Ref | Expression |
|---|---|
| brub.1 | ⊢ 𝑆 ∈ V |
| brub.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| brlb | ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lb 35872 | . . 3 ⊢ LB𝑅 = UB◡𝑅 | |
| 2 | 1 | breqi 5116 | . 2 ⊢ (𝑆LB𝑅𝐴 ↔ 𝑆UB◡𝑅𝐴) |
| 3 | brub.1 | . . 3 ⊢ 𝑆 ∈ V | |
| 4 | brub.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 3, 4 | brub 35949 | . 2 ⊢ (𝑆UB◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴) |
| 6 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6, 4 | brcnv 5849 | . . 3 ⊢ (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥) |
| 8 | 7 | ralbii 3076 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| 9 | 2, 5, 8 | 3bitri 297 | 1 ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 class class class wbr 5110 ◡ccnv 5640 UBcub 35847 LBclb 35848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-xp 5647 df-cnv 5649 df-co 5650 df-ub 35871 df-lb 35872 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |