| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brlb | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| Ref | Expression |
|---|---|
| brub.1 | ⊢ 𝑆 ∈ V |
| brub.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| brlb | ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lb 35940 | . . 3 ⊢ LB𝑅 = UB◡𝑅 | |
| 2 | 1 | breqi 5099 | . 2 ⊢ (𝑆LB𝑅𝐴 ↔ 𝑆UB◡𝑅𝐴) |
| 3 | brub.1 | . . 3 ⊢ 𝑆 ∈ V | |
| 4 | brub.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 3, 4 | brub 36019 | . 2 ⊢ (𝑆UB◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴) |
| 6 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6, 4 | brcnv 5826 | . . 3 ⊢ (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥) |
| 8 | 7 | ralbii 3079 | . 2 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| 9 | 2, 5, 8 | 3bitri 297 | 1 ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 class class class wbr 5093 ◡ccnv 5618 UBcub 35915 LBclb 35916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 df-xp 5625 df-cnv 5627 df-co 5628 df-ub 35939 df-lb 35940 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |