Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brnonrel | Structured version Visualization version GIF version |
Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
brnonrel | ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5119 | . 2 ⊢ ¬ 𝑌∅𝑋 | |
2 | brcnvg 5777 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑈) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) |
4 | cnvnonrel 41085 | . . . 4 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | breqi 5076 | . . 3 ⊢ (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑌∅𝑋) |
6 | 3, 5 | bitr3di 285 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑋(𝐴 ∖ ◡◡𝐴)𝑌 ↔ 𝑌∅𝑋)) |
7 | 1, 6 | mtbiri 326 | 1 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 class class class wbr 5070 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |