![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brnonrel | Structured version Visualization version GIF version |
Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
brnonrel | ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5155 | . 2 ⊢ ¬ 𝑌∅𝑋 | |
2 | brcnvg 5836 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑈) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) | |
3 | 2 | ancoms 460 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) |
4 | cnvnonrel 41867 | . . . 4 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | breqi 5112 | . . 3 ⊢ (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑌∅𝑋) |
6 | 3, 5 | bitr3di 286 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑋(𝐴 ∖ ◡◡𝐴)𝑌 ↔ 𝑌∅𝑋)) |
7 | 1, 6 | mtbiri 327 | 1 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∖ cdif 3908 ∅c0 4283 class class class wbr 5106 ◡ccnv 5633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |