![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brnonrel | Structured version Visualization version GIF version |
Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
brnonrel | ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5197 | . 2 ⊢ ¬ 𝑌∅𝑋 | |
2 | brcnvg 5879 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑈) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) |
4 | cnvnonrel 42802 | . . . 4 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | breqi 5154 | . . 3 ⊢ (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑌∅𝑋) |
6 | 3, 5 | bitr3di 286 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑋(𝐴 ∖ ◡◡𝐴)𝑌 ↔ 𝑌∅𝑋)) |
7 | 1, 6 | mtbiri 327 | 1 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∖ cdif 3945 ∅c0 4322 class class class wbr 5148 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |