Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brnonrel Structured version   Visualization version   GIF version

Theorem brnonrel 43571
Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.)
Assertion
Ref Expression
brnonrel ((𝑋𝑈𝑌𝑉) → ¬ 𝑋(𝐴𝐴)𝑌)

Proof of Theorem brnonrel
StepHypRef Expression
1 br0 5158 . 2 ¬ 𝑌𝑋
2 brcnvg 5845 . . . 4 ((𝑌𝑉𝑋𝑈) → (𝑌(𝐴𝐴)𝑋𝑋(𝐴𝐴)𝑌))
32ancoms 458 . . 3 ((𝑋𝑈𝑌𝑉) → (𝑌(𝐴𝐴)𝑋𝑋(𝐴𝐴)𝑌))
4 cnvnonrel 43570 . . . 4 (𝐴𝐴) = ∅
54breqi 5115 . . 3 (𝑌(𝐴𝐴)𝑋𝑌𝑋)
63, 5bitr3di 286 . 2 ((𝑋𝑈𝑌𝑉) → (𝑋(𝐴𝐴)𝑌𝑌𝑋))
71, 6mtbiri 327 1 ((𝑋𝑈𝑌𝑉) → ¬ 𝑋(𝐴𝐴)𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  cdif 3913  c0 4298   class class class wbr 5109  ccnv 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator