Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brnonrel | Structured version Visualization version GIF version |
Description: A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
Ref | Expression |
---|---|
brnonrel | ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5084 | . 2 ⊢ ¬ 𝑌∅𝑋 | |
2 | brcnvg 5724 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑈) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) | |
3 | 2 | ancoms 462 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌)) |
4 | cnvnonrel 40689 | . . . 4 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | |
5 | 4 | breqi 5041 | . . 3 ⊢ (𝑌◡(𝐴 ∖ ◡◡𝐴)𝑋 ↔ 𝑌∅𝑋) |
6 | 3, 5 | bitr3di 289 | . 2 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑋(𝐴 ∖ ◡◡𝐴)𝑌 ↔ 𝑌∅𝑋)) |
7 | 1, 6 | mtbiri 330 | 1 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∖ cdif 3857 ∅c0 4227 class class class wbr 5035 ◡ccnv 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-rel 5534 df-cnv 5535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |