Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvnonrel Structured version   Visualization version   GIF version

Theorem cnvnonrel 43160
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvnonrel (𝐴𝐴) = ∅

Proof of Theorem cnvnonrel
StepHypRef Expression
1 cnvdif 6150 . 2 (𝐴𝐴) = (𝐴𝐴)
2 relcnv 6109 . . 3 Rel 𝐴
3 relnonrel 43159 . . 3 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
42, 3mpbi 229 . 2 (𝐴𝐴) = ∅
51, 4eqtri 2753 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cdif 3941  c0 4322  ccnv 5677  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686
This theorem is referenced by:  brnonrel  43161  dmnonrel  43162  resnonrel  43164  cononrel1  43166  cononrel2  43167  clcnvlem  43195  cnvrcl0  43197
  Copyright terms: Public domain W3C validator