Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvnonrel Structured version   Visualization version   GIF version

Theorem cnvnonrel 43612
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvnonrel (𝐴𝐴) = ∅

Proof of Theorem cnvnonrel
StepHypRef Expression
1 cnvdif 6132 . 2 (𝐴𝐴) = (𝐴𝐴)
2 relcnv 6091 . . 3 Rel 𝐴
3 relnonrel 43611 . . 3 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
42, 3mpbi 230 . 2 (𝐴𝐴) = ∅
51, 4eqtri 2758 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3923  c0 4308  ccnv 5653  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  brnonrel  43613  dmnonrel  43614  resnonrel  43616  cononrel1  43618  cononrel2  43619  clcnvlem  43647  cnvrcl0  43649
  Copyright terms: Public domain W3C validator