Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvnonrel | Structured version Visualization version GIF version |
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
Ref | Expression |
---|---|
cnvnonrel | ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvdif 6047 | . 2 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = (◡𝐴 ∖ ◡◡◡𝐴) | |
2 | relcnv 6012 | . . 3 ⊢ Rel ◡𝐴 | |
3 | relnonrel 41195 | . . 3 ⊢ (Rel ◡𝐴 ↔ (◡𝐴 ∖ ◡◡◡𝐴) = ∅) | |
4 | 2, 3 | mpbi 229 | . 2 ⊢ (◡𝐴 ∖ ◡◡◡𝐴) = ∅ |
5 | 1, 4 | eqtri 2766 | 1 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 ∅c0 4256 ◡ccnv 5588 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: brnonrel 41197 dmnonrel 41198 resnonrel 41200 cononrel1 41202 cononrel2 41203 clcnvlem 41231 cnvrcl0 41233 |
Copyright terms: Public domain | W3C validator |