Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvnonrel Structured version   Visualization version   GIF version

Theorem cnvnonrel 42641
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvnonrel (𝐴𝐴) = ∅

Proof of Theorem cnvnonrel
StepHypRef Expression
1 cnvdif 6142 . 2 (𝐴𝐴) = (𝐴𝐴)
2 relcnv 6102 . . 3 Rel 𝐴
3 relnonrel 42640 . . 3 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
42, 3mpbi 229 . 2 (𝐴𝐴) = ∅
51, 4eqtri 2758 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3944  c0 4321  ccnv 5674  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683
This theorem is referenced by:  brnonrel  42642  dmnonrel  42643  resnonrel  42645  cononrel1  42647  cononrel2  42648  clcnvlem  42676  cnvrcl0  42678
  Copyright terms: Public domain W3C validator