| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvnonrel | Structured version Visualization version GIF version | ||
| Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| cnvnonrel | ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvdif 6116 | . 2 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = (◡𝐴 ∖ ◡◡◡𝐴) | |
| 2 | relcnv 6075 | . . 3 ⊢ Rel ◡𝐴 | |
| 3 | relnonrel 43576 | . . 3 ⊢ (Rel ◡𝐴 ↔ (◡𝐴 ∖ ◡◡◡𝐴) = ∅) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ (◡𝐴 ∖ ◡◡◡𝐴) = ∅ |
| 5 | 1, 4 | eqtri 2752 | 1 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∅c0 4296 ◡ccnv 5637 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: brnonrel 43578 dmnonrel 43579 resnonrel 43581 cononrel1 43583 cononrel2 43584 clcnvlem 43612 cnvrcl0 43614 |
| Copyright terms: Public domain | W3C validator |