Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvnonrel Structured version   Visualization version   GIF version

Theorem cnvnonrel 41085
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvnonrel (𝐴𝐴) = ∅

Proof of Theorem cnvnonrel
StepHypRef Expression
1 cnvdif 6036 . 2 (𝐴𝐴) = (𝐴𝐴)
2 relcnv 6001 . . 3 Rel 𝐴
3 relnonrel 41084 . . 3 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
42, 3mpbi 229 . 2 (𝐴𝐴) = ∅
51, 4eqtri 2766 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3880  c0 4253  ccnv 5579  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  brnonrel  41086  dmnonrel  41087  resnonrel  41089  cononrel1  41091  cononrel2  41092  clcnvlem  41120  cnvrcl0  41122
  Copyright terms: Public domain W3C validator