Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvnonrel | Structured version Visualization version GIF version |
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
Ref | Expression |
---|---|
cnvnonrel | ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvdif 6007 | . 2 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = (◡𝐴 ∖ ◡◡◡𝐴) | |
2 | relcnv 5972 | . . 3 ⊢ Rel ◡𝐴 | |
3 | relnonrel 40871 | . . 3 ⊢ (Rel ◡𝐴 ↔ (◡𝐴 ∖ ◡◡◡𝐴) = ∅) | |
4 | 2, 3 | mpbi 233 | . 2 ⊢ (◡𝐴 ∖ ◡◡◡𝐴) = ∅ |
5 | 1, 4 | eqtri 2765 | 1 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∖ cdif 3863 ∅c0 4237 ◡ccnv 5550 Rel wrel 5556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 |
This theorem is referenced by: brnonrel 40873 dmnonrel 40874 resnonrel 40876 cononrel1 40878 cononrel2 40879 clcnvlem 40907 cnvrcl0 40909 |
Copyright terms: Public domain | W3C validator |