Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvnonrel Structured version   Visualization version   GIF version

Theorem cnvnonrel 43581
Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.)
Assertion
Ref Expression
cnvnonrel (𝐴𝐴) = ∅

Proof of Theorem cnvnonrel
StepHypRef Expression
1 cnvdif 6092 . 2 (𝐴𝐴) = (𝐴𝐴)
2 relcnv 6055 . . 3 Rel 𝐴
3 relnonrel 43580 . . 3 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
42, 3mpbi 230 . 2 (𝐴𝐴) = ∅
51, 4eqtri 2752 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3900  c0 4284  ccnv 5618  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627
This theorem is referenced by:  brnonrel  43582  dmnonrel  43583  resnonrel  43585  cononrel1  43587  cononrel2  43588  clcnvlem  43616  cnvrcl0  43618
  Copyright terms: Public domain W3C validator