| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvnonrel | Structured version Visualization version GIF version | ||
| Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| cnvnonrel | ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvdif 6132 | . 2 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = (◡𝐴 ∖ ◡◡◡𝐴) | |
| 2 | relcnv 6091 | . . 3 ⊢ Rel ◡𝐴 | |
| 3 | relnonrel 43611 | . . 3 ⊢ (Rel ◡𝐴 ↔ (◡𝐴 ∖ ◡◡◡𝐴) = ∅) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ (◡𝐴 ∖ ◡◡◡𝐴) = ∅ |
| 5 | 1, 4 | eqtri 2758 | 1 ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3923 ∅c0 4308 ◡ccnv 5653 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: brnonrel 43613 dmnonrel 43614 resnonrel 43616 cononrel1 43618 cononrel2 43619 clcnvlem 43647 cnvrcl0 43649 |
| Copyright terms: Public domain | W3C validator |