Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2756. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) |
5 | 2, 4 | eqeq12d 2754 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-cleq 2730 |
This theorem is referenced by: eqeqan12rd 2757 eqfnfv2 6810 f1mpt 7030 soisores 7093 xpopth 7755 f1o2ndf1 7844 fnwelem 7851 fnse 7853 tz7.48lem 8106 ecopoveq 8429 xpdom2 8661 unfilem2 8857 wemaplem1 9083 suc11reg 9155 oemapval 9219 cantnf 9229 wemapwe 9233 r0weon 9512 infxpen 9514 fodomacn 9556 sornom 9777 fin1a2lem2 9901 fin1a2lem4 9903 neg11 11015 subeqrev 11140 rpnnen1lem6 12464 cnref1o 12467 xneg11 12691 injresinj 13249 modadd1 13367 modmul1 13383 modlteq 13404 sq11 13588 hashen 13799 fz1eqb 13807 eqwrd 13998 s111 14058 ccatopth 14167 wrd2ind 14174 wwlktovf1 14410 cj11 14611 sqrt11 14712 sqabs 14757 recan 14786 reeff1 15565 efieq 15608 eulerthlem2 16219 vdwlem12 16428 xpsff1o 16943 ismhm 18074 gsmsymgreq 18678 symgfixf1 18683 odf1 18807 sylow1 18846 frgpuplem 19016 isdomn 20186 cygznlem3 20388 psgnghm 20396 tgtop11 21733 fclsval 22759 vitali 24365 recosf1o 25279 dvdsmulf1o 25931 fsumvma 25949 brcgr 26846 axlowdimlem15 26902 axcontlem1 26910 axcontlem4 26913 axcontlem7 26916 axcontlem8 26917 iswlk 27552 wlkswwlksf1o 27817 wwlksnextinj 27837 clwlkclwwlkf1 27947 clwwlkf1 27986 numclwwlkqhash 28312 grpoinvf 28467 hial2eq2 29042 qusker 31121 bnj554 32450 erdszelem9 32732 sategoelfvb 32952 mrsubff1 33047 msubff1 33089 mvhf1 33092 fneval 34179 topfneec2 34183 bj-imdirval3 34976 f1omptsnlem 35130 f1omptsn 35131 rdgeqoa 35164 poimirlem4 35404 poimirlem26 35426 poimirlem27 35427 ismtyval 35581 extep 36041 brdmqss 36382 wepwsolem 40439 fnwe2val 40446 aomclem8 40458 relexp0eq 40855 sprsymrelf1 44482 fmtnof1 44521 fmtnofac1 44556 prmdvdsfmtnof1 44573 sfprmdvdsmersenne 44589 isupwlk 44832 uspgrsprf1 44843 ismgmhm 44871 2zlidl 45026 rrx2xpref1o 45598 rrx2plord 45600 rrx2plordisom 45603 sphere 45627 line2ylem 45631 |
Copyright terms: Public domain | W3C validator |