| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2753. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2736 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2745 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 |
| This theorem is referenced by: eqeqan12rd 2749 eqeq12d 2750 eqeq12 2751 eqfnfv2 7032 f1mpt 7263 soisores 7329 xpopth 8037 f1o2ndf1 8129 fnwelem 8138 fnse 8140 tz7.48lem 8463 ecopoveq 8840 xpdom2 9089 unfilem2 9326 wemaplem1 9568 suc11reg 9641 oemapval 9705 cantnf 9715 wemapwe 9719 r0weon 10034 infxpen 10036 fodomacn 10078 sornom 10299 fin1a2lem2 10423 fin1a2lem4 10425 neg11 11542 subeqrev 11667 rpnnen1lem6 13006 cnref1o 13009 xneg11 13239 injresinj 13809 modadd1 13930 modmul1 13947 modlteq 13968 sq11 14153 hashen 14368 fz1eqb 14375 eqwrd 14577 s111 14635 ccatopth 14736 wrd2ind 14743 wwlktovf1 14978 cj11 15183 sqrt11 15283 sqabs 15328 recan 15357 reeff1 16138 efieq 16181 eulerthlem2 16801 vdwlem12 17012 xpsff1o 17583 ismgmhm 18678 ismhm 18767 isghm 19202 gsmsymgreq 19418 symgfixf1 19423 odf1 19548 sylow1 19589 frgpuplem 19758 isdomn 20673 rngqiprngimfo 21273 pzriprnglem11 21464 cygznlem3 21542 psgnghm 21552 tgtop11 22936 fclsval 23962 vitali 25584 recosf1o 26513 mpodvdsmulf1o 27173 dvdsmulf1o 27175 fsumvma 27193 negs11 28017 brcgr 28845 axlowdimlem15 28901 axcontlem1 28909 axcontlem4 28912 axcontlem7 28915 axcontlem8 28916 iswlk 29556 wlkswwlksf1o 29827 wwlksnextinj 29847 clwlkclwwlkf1 29957 clwwlkf1 29996 numclwwlkqhash 30322 grpoinvf 30479 hial2eq2 31054 qusker 33312 bnj554 34872 erdszelem9 35163 sategoelfvb 35383 mrsubff1 35478 msubff1 35520 mvhf1 35523 fneval 36312 topfneec2 36316 bj-imdirval3 37144 f1omptsnlem 37296 f1omptsn 37297 rdgeqoa 37330 poimirlem4 37590 poimirlem26 37612 poimirlem27 37613 ismtyval 37766 extep 38243 brdmqss 38606 fimgmcyc 42507 sn-isghm 42646 wepwsolem 43017 fnwe2val 43024 aomclem8 43036 onsucf1o 43247 relexp0eq 43676 sprsymrelf1 47441 fmtnof1 47480 fmtnofac1 47515 prmdvdsfmtnof1 47532 sfprmdvdsmersenne 47548 gpgedgvtx0 47977 isupwlk 48010 uspgrsprf1 48021 2zlidl 48114 rrx2xpref1o 48597 rrx2plord 48599 rrx2plordisom 48602 sphere 48626 line2ylem 48630 |
| Copyright terms: Public domain | W3C validator |