Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2760. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2740 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2749 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: eqeqan12rd 2753 eqeq12d 2754 eqeq12 2755 eqfnfv2 6892 f1mpt 7115 soisores 7178 xpopth 7845 f1o2ndf1 7934 fnwelem 7943 fnse 7945 tz7.48lem 8242 ecopoveq 8565 xpdom2 8807 unfilem2 9009 wemaplem1 9235 suc11reg 9307 oemapval 9371 cantnf 9381 wemapwe 9385 r0weon 9699 infxpen 9701 fodomacn 9743 sornom 9964 fin1a2lem2 10088 fin1a2lem4 10090 neg11 11202 subeqrev 11327 rpnnen1lem6 12651 cnref1o 12654 xneg11 12878 injresinj 13436 modadd1 13556 modmul1 13572 modlteq 13593 sq11 13778 hashen 13989 fz1eqb 13997 eqwrd 14188 s111 14248 ccatopth 14357 wrd2ind 14364 wwlktovf1 14600 cj11 14801 sqrt11 14902 sqabs 14947 recan 14976 reeff1 15757 efieq 15800 eulerthlem2 16411 vdwlem12 16621 xpsff1o 17195 ismhm 18347 gsmsymgreq 18955 symgfixf1 18960 odf1 19084 sylow1 19123 frgpuplem 19293 isdomn 20478 cygznlem3 20689 psgnghm 20697 tgtop11 22040 fclsval 23067 vitali 24682 recosf1o 25596 dvdsmulf1o 26248 fsumvma 26266 brcgr 27171 axlowdimlem15 27227 axcontlem1 27235 axcontlem4 27238 axcontlem7 27241 axcontlem8 27242 iswlk 27880 wlkswwlksf1o 28145 wwlksnextinj 28165 clwlkclwwlkf1 28275 clwwlkf1 28314 numclwwlkqhash 28640 grpoinvf 28795 hial2eq2 29370 qusker 31451 bnj554 32779 erdszelem9 33061 sategoelfvb 33281 mrsubff1 33376 msubff1 33418 mvhf1 33421 fneval 34468 topfneec2 34472 bj-imdirval3 35282 f1omptsnlem 35434 f1omptsn 35435 rdgeqoa 35468 poimirlem4 35708 poimirlem26 35730 poimirlem27 35731 ismtyval 35885 extep 36345 brdmqss 36686 wepwsolem 40783 fnwe2val 40790 aomclem8 40802 relexp0eq 41198 sprsymrelf1 44836 fmtnof1 44875 fmtnofac1 44910 prmdvdsfmtnof1 44927 sfprmdvdsmersenne 44943 isupwlk 45186 uspgrsprf1 45197 ismgmhm 45225 2zlidl 45380 rrx2xpref1o 45952 rrx2plord 45954 rrx2plordisom 45957 sphere 45981 line2ylem 45985 |
Copyright terms: Public domain | W3C validator |