| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2752. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2735 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2744 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 |
| This theorem is referenced by: eqeqan12rd 2748 eqeq12d 2749 eqeq12 2750 eqfnfv2 6973 f1mpt 7203 soisores 7269 xpopth 7970 f1o2ndf1 8060 fnwelem 8069 fnse 8071 tz7.48lem 8368 ecopoveq 8750 xpdom2 8994 unfilem2 9199 wemaplem1 9441 suc11reg 9518 oemapval 9582 cantnf 9592 wemapwe 9596 r0weon 9912 infxpen 9914 fodomacn 9956 sornom 10177 fin1a2lem2 10301 fin1a2lem4 10303 neg11 11421 subeqrev 11548 rpnnen1lem6 12884 cnref1o 12887 xneg11 13118 injresinj 13695 modadd1 13816 modaddid 13818 modmul1 13835 modlteq 13856 sq11 14042 hashen 14258 fz1eqb 14265 eqwrd 14468 s111 14527 ccatopth 14627 wrd2ind 14634 wwlktovf1 14868 cj11 15073 sqrt11 15173 sqabs 15218 recan 15248 reeff1 16033 efieq 16076 eulerthlem2 16697 vdwlem12 16908 xpsff1o 17475 ismgmhm 18608 ismhm 18697 isghm 19131 gsmsymgreq 19348 symgfixf1 19353 odf1 19478 sylow1 19519 frgpuplem 19688 isdomn 20624 rngqiprngimfo 21242 pzriprnglem11 21432 cygznlem3 21510 psgnghm 21521 tgtop11 22900 fclsval 23926 vitali 25544 recosf1o 26474 mpodvdsmulf1o 27134 dvdsmulf1o 27136 fsumvma 27154 negs11 27994 onsiso 28208 bdayn0sf1o 28298 brcgr 28882 axlowdimlem15 28938 axcontlem1 28946 axcontlem4 28949 axcontlem7 28952 axcontlem8 28953 iswlk 29593 wlkswwlksf1o 29861 wwlksnextinj 29881 clwlkclwwlkf1 29994 clwwlkf1 30033 numclwwlkqhash 30359 grpoinvf 30516 hial2eq2 31091 qusker 33323 bnj554 34934 erdszelem9 35266 sategoelfvb 35486 mrsubff1 35581 msubff1 35623 mvhf1 35626 fneval 36419 topfneec2 36423 bj-imdirval3 37251 f1omptsnlem 37403 f1omptsn 37404 rdgeqoa 37437 poimirlem4 37687 poimirlem26 37709 poimirlem27 37710 ismtyval 37863 extep 38344 brsucmap 38502 brdmqss 38766 fimgmcyc 42655 sn-isghm 42794 wepwsolem 43162 fnwe2val 43169 aomclem8 43181 onsucf1o 43392 relexp0eq 43821 sprsymrelf1 47623 fmtnof1 47662 fmtnofac1 47697 prmdvdsfmtnof1 47714 sfprmdvdsmersenne 47730 gpgedgvtx0 48188 isupwlk 48263 uspgrsprf1 48274 2zlidl 48367 rrx2xpref1o 48846 rrx2plord 48848 rrx2plordisom 48851 sphere 48875 line2ylem 48879 |
| Copyright terms: Public domain | W3C validator |