| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2748. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2740 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqeqan12rd 2744 eqeq12d 2745 eqeq12 2746 eqfnfv2 6970 f1mpt 7202 soisores 7268 xpopth 7972 f1o2ndf1 8062 fnwelem 8071 fnse 8073 tz7.48lem 8370 ecopoveq 8752 xpdom2 8996 unfilem2 9213 wemaplem1 9457 suc11reg 9534 oemapval 9598 cantnf 9608 wemapwe 9612 r0weon 9925 infxpen 9927 fodomacn 9969 sornom 10190 fin1a2lem2 10314 fin1a2lem4 10316 neg11 11433 subeqrev 11560 rpnnen1lem6 12901 cnref1o 12904 xneg11 13135 injresinj 13709 modadd1 13830 modaddid 13832 modmul1 13849 modlteq 13870 sq11 14056 hashen 14272 fz1eqb 14279 eqwrd 14482 s111 14540 ccatopth 14640 wrd2ind 14647 wwlktovf1 14882 cj11 15087 sqrt11 15187 sqabs 15232 recan 15262 reeff1 16047 efieq 16090 eulerthlem2 16711 vdwlem12 16922 xpsff1o 17489 ismgmhm 18588 ismhm 18677 isghm 19112 gsmsymgreq 19329 symgfixf1 19334 odf1 19459 sylow1 19500 frgpuplem 19669 isdomn 20608 rngqiprngimfo 21226 pzriprnglem11 21416 cygznlem3 21494 psgnghm 21505 tgtop11 22885 fclsval 23911 vitali 25530 recosf1o 26460 mpodvdsmulf1o 27120 dvdsmulf1o 27122 fsumvma 27140 negs11 27978 onsiso 28192 bdayn0sf1o 28282 brcgr 28863 axlowdimlem15 28919 axcontlem1 28927 axcontlem4 28930 axcontlem7 28933 axcontlem8 28934 iswlk 29574 wlkswwlksf1o 29842 wwlksnextinj 29862 clwlkclwwlkf1 29972 clwwlkf1 30011 numclwwlkqhash 30337 grpoinvf 30494 hial2eq2 31069 qusker 33299 bnj554 34868 erdszelem9 35174 sategoelfvb 35394 mrsubff1 35489 msubff1 35531 mvhf1 35534 fneval 36328 topfneec2 36332 bj-imdirval3 37160 f1omptsnlem 37312 f1omptsn 37313 rdgeqoa 37346 poimirlem4 37606 poimirlem26 37628 poimirlem27 37629 ismtyval 37782 extep 38259 brdmqss 38625 fimgmcyc 42510 sn-isghm 42649 wepwsolem 43018 fnwe2val 43025 aomclem8 43037 onsucf1o 43248 relexp0eq 43677 sprsymrelf1 47484 fmtnof1 47523 fmtnofac1 47558 prmdvdsfmtnof1 47575 sfprmdvdsmersenne 47591 gpgedgvtx0 48049 isupwlk 48124 uspgrsprf1 48135 2zlidl 48228 rrx2xpref1o 48707 rrx2plord 48709 rrx2plordisom 48712 sphere 48736 line2ylem 48740 |
| Copyright terms: Public domain | W3C validator |