![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2762. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2742 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2751 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: eqeqan12rd 2755 eqeq12d 2756 eqeq12 2757 eqfnfv2 7065 f1mpt 7298 soisores 7363 xpopth 8071 f1o2ndf1 8163 fnwelem 8172 fnse 8174 tz7.48lem 8497 ecopoveq 8876 xpdom2 9133 unfilem2 9372 wemaplem1 9615 suc11reg 9688 oemapval 9752 cantnf 9762 wemapwe 9766 r0weon 10081 infxpen 10083 fodomacn 10125 sornom 10346 fin1a2lem2 10470 fin1a2lem4 10472 neg11 11587 subeqrev 11712 rpnnen1lem6 13047 cnref1o 13050 xneg11 13277 injresinj 13838 modadd1 13959 modmul1 13975 modlteq 13996 sq11 14181 hashen 14396 fz1eqb 14403 eqwrd 14605 s111 14663 ccatopth 14764 wrd2ind 14771 wwlktovf1 15006 cj11 15211 sqrt11 15311 sqabs 15356 recan 15385 reeff1 16168 efieq 16211 eulerthlem2 16829 vdwlem12 17039 xpsff1o 17627 ismgmhm 18734 ismhm 18820 isghm 19255 gsmsymgreq 19474 symgfixf1 19479 odf1 19604 sylow1 19645 frgpuplem 19814 isdomn 20727 rngqiprngimfo 21334 pzriprnglem11 21525 cygznlem3 21611 psgnghm 21621 tgtop11 23010 fclsval 24037 vitali 25667 recosf1o 26595 mpodvdsmulf1o 27255 dvdsmulf1o 27257 fsumvma 27275 negs11 28099 brcgr 28933 axlowdimlem15 28989 axcontlem1 28997 axcontlem4 29000 axcontlem7 29003 axcontlem8 29004 iswlk 29646 wlkswwlksf1o 29912 wwlksnextinj 29932 clwlkclwwlkf1 30042 clwwlkf1 30081 numclwwlkqhash 30407 grpoinvf 30564 hial2eq2 31139 qusker 33342 bnj554 34875 erdszelem9 35167 sategoelfvb 35387 mrsubff1 35482 msubff1 35524 mvhf1 35527 fneval 36318 topfneec2 36322 bj-imdirval3 37150 f1omptsnlem 37302 f1omptsn 37303 rdgeqoa 37336 poimirlem4 37584 poimirlem26 37606 poimirlem27 37607 ismtyval 37760 extep 38239 brdmqss 38602 fimgmcyc 42489 sn-isghm 42628 wepwsolem 42999 fnwe2val 43006 aomclem8 43018 onsucf1o 43234 relexp0eq 43663 sprsymrelf1 47370 fmtnof1 47409 fmtnofac1 47444 prmdvdsfmtnof1 47461 sfprmdvdsmersenne 47477 isupwlk 47859 uspgrsprf1 47870 2zlidl 47963 rrx2xpref1o 48452 rrx2plord 48454 rrx2plordisom 48457 sphere 48481 line2ylem 48485 |
Copyright terms: Public domain | W3C validator |