![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2757. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2737 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2746 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: eqeqan12rd 2750 eqeq12d 2751 eqeq12 2752 eqfnfv2 7052 f1mpt 7281 soisores 7347 xpopth 8054 f1o2ndf1 8146 fnwelem 8155 fnse 8157 tz7.48lem 8480 ecopoveq 8857 xpdom2 9106 unfilem2 9342 wemaplem1 9584 suc11reg 9657 oemapval 9721 cantnf 9731 wemapwe 9735 r0weon 10050 infxpen 10052 fodomacn 10094 sornom 10315 fin1a2lem2 10439 fin1a2lem4 10441 neg11 11558 subeqrev 11683 rpnnen1lem6 13022 cnref1o 13025 xneg11 13254 injresinj 13824 modadd1 13945 modmul1 13962 modlteq 13983 sq11 14168 hashen 14383 fz1eqb 14390 eqwrd 14592 s111 14650 ccatopth 14751 wrd2ind 14758 wwlktovf1 14993 cj11 15198 sqrt11 15298 sqabs 15343 recan 15372 reeff1 16153 efieq 16196 eulerthlem2 16816 vdwlem12 17026 xpsff1o 17614 ismgmhm 18722 ismhm 18811 isghm 19246 gsmsymgreq 19465 symgfixf1 19470 odf1 19595 sylow1 19636 frgpuplem 19805 isdomn 20722 rngqiprngimfo 21329 pzriprnglem11 21520 cygznlem3 21606 psgnghm 21616 tgtop11 23005 fclsval 24032 vitali 25662 recosf1o 26592 mpodvdsmulf1o 27252 dvdsmulf1o 27254 fsumvma 27272 negs11 28096 brcgr 28930 axlowdimlem15 28986 axcontlem1 28994 axcontlem4 28997 axcontlem7 29000 axcontlem8 29001 iswlk 29643 wlkswwlksf1o 29909 wwlksnextinj 29929 clwlkclwwlkf1 30039 clwwlkf1 30078 numclwwlkqhash 30404 grpoinvf 30561 hial2eq2 31136 qusker 33357 bnj554 34892 erdszelem9 35184 sategoelfvb 35404 mrsubff1 35499 msubff1 35541 mvhf1 35544 fneval 36335 topfneec2 36339 bj-imdirval3 37167 f1omptsnlem 37319 f1omptsn 37320 rdgeqoa 37353 poimirlem4 37611 poimirlem26 37633 poimirlem27 37634 ismtyval 37787 extep 38265 brdmqss 38628 fimgmcyc 42521 sn-isghm 42660 wepwsolem 43031 fnwe2val 43038 aomclem8 43050 onsucf1o 43262 relexp0eq 43691 sprsymrelf1 47421 fmtnof1 47460 fmtnofac1 47495 prmdvdsfmtnof1 47512 sfprmdvdsmersenne 47528 gpgedgvtx0 47954 isupwlk 47980 uspgrsprf1 47991 2zlidl 48084 rrx2xpref1o 48568 rrx2plord 48570 rrx2plordisom 48573 sphere 48597 line2ylem 48601 |
Copyright terms: Public domain | W3C validator |