| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2755. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2738 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2747 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: eqeqan12rd 2751 eqeq12d 2752 eqeq12 2753 eqfnfv2 7027 f1mpt 7259 soisores 7325 xpopth 8034 f1o2ndf1 8126 fnwelem 8135 fnse 8137 tz7.48lem 8460 ecopoveq 8837 xpdom2 9086 unfilem2 9321 wemaplem1 9565 suc11reg 9638 oemapval 9702 cantnf 9712 wemapwe 9716 r0weon 10031 infxpen 10033 fodomacn 10075 sornom 10296 fin1a2lem2 10420 fin1a2lem4 10422 neg11 11539 subeqrev 11664 rpnnen1lem6 13003 cnref1o 13006 xneg11 13236 injresinj 13809 modadd1 13930 modmul1 13947 modlteq 13968 sq11 14154 hashen 14370 fz1eqb 14377 eqwrd 14580 s111 14638 ccatopth 14739 wrd2ind 14746 wwlktovf1 14981 cj11 15186 sqrt11 15286 sqabs 15331 recan 15360 reeff1 16143 efieq 16186 eulerthlem2 16806 vdwlem12 17017 xpsff1o 17586 ismgmhm 18679 ismhm 18768 isghm 19203 gsmsymgreq 19418 symgfixf1 19423 odf1 19548 sylow1 19589 frgpuplem 19758 isdomn 20670 rngqiprngimfo 21267 pzriprnglem11 21457 cygznlem3 21535 psgnghm 21545 tgtop11 22925 fclsval 23951 vitali 25571 recosf1o 26501 mpodvdsmulf1o 27161 dvdsmulf1o 27163 fsumvma 27181 negs11 28012 onsiso 28226 bdayn0sf1o 28316 brcgr 28884 axlowdimlem15 28940 axcontlem1 28948 axcontlem4 28951 axcontlem7 28954 axcontlem8 28955 iswlk 29595 wlkswwlksf1o 29866 wwlksnextinj 29886 clwlkclwwlkf1 29996 clwwlkf1 30035 numclwwlkqhash 30361 grpoinvf 30518 hial2eq2 31093 qusker 33369 bnj554 34935 erdszelem9 35226 sategoelfvb 35446 mrsubff1 35541 msubff1 35583 mvhf1 35586 fneval 36375 topfneec2 36379 bj-imdirval3 37207 f1omptsnlem 37359 f1omptsn 37360 rdgeqoa 37393 poimirlem4 37653 poimirlem26 37675 poimirlem27 37676 ismtyval 37829 extep 38306 brdmqss 38669 fimgmcyc 42532 sn-isghm 42671 wepwsolem 43041 fnwe2val 43048 aomclem8 43060 onsucf1o 43271 relexp0eq 43700 sprsymrelf1 47490 fmtnof1 47529 fmtnofac1 47564 prmdvdsfmtnof1 47581 sfprmdvdsmersenne 47597 gpgedgvtx0 48045 isupwlk 48091 uspgrsprf1 48102 2zlidl 48195 rrx2xpref1o 48678 rrx2plord 48680 rrx2plordisom 48683 sphere 48707 line2ylem 48711 |
| Copyright terms: Public domain | W3C validator |