![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2755. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2735 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2744 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
5 | 2, 4 | sylan9bb 511 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: eqeqan12rd 2748 eqeq12d 2749 eqeq12 2750 eqfnfv2 7034 f1mpt 7260 soisores 7324 xpopth 8016 f1o2ndf1 8108 fnwelem 8117 fnse 8119 tz7.48lem 8441 ecopoveq 8812 xpdom2 9067 unfilem2 9311 wemaplem1 9541 suc11reg 9614 oemapval 9678 cantnf 9688 wemapwe 9692 r0weon 10007 infxpen 10009 fodomacn 10051 sornom 10272 fin1a2lem2 10396 fin1a2lem4 10398 neg11 11511 subeqrev 11636 rpnnen1lem6 12966 cnref1o 12969 xneg11 13194 injresinj 13753 modadd1 13873 modmul1 13889 modlteq 13910 sq11 14096 hashen 14307 fz1eqb 14314 eqwrd 14507 s111 14565 ccatopth 14666 wrd2ind 14673 wwlktovf1 14908 cj11 15109 sqrt11 15209 sqabs 15254 recan 15283 reeff1 16063 efieq 16106 eulerthlem2 16715 vdwlem12 16925 xpsff1o 17513 ismhm 18673 gsmsymgreq 19300 symgfixf1 19305 odf1 19430 sylow1 19471 frgpuplem 19640 isdomn 20910 cygznlem3 21125 psgnghm 21133 tgtop11 22485 fclsval 23512 vitali 25130 recosf1o 26044 dvdsmulf1o 26698 fsumvma 26716 negs11 27523 brcgr 28158 axlowdimlem15 28214 axcontlem1 28222 axcontlem4 28225 axcontlem7 28228 axcontlem8 28229 iswlk 28867 wlkswwlksf1o 29133 wwlksnextinj 29153 clwlkclwwlkf1 29263 clwwlkf1 29302 numclwwlkqhash 29628 grpoinvf 29785 hial2eq2 30360 qusker 32464 bnj554 33910 erdszelem9 34190 sategoelfvb 34410 mrsubff1 34505 msubff1 34547 mvhf1 34550 fneval 35237 topfneec2 35241 bj-imdirval3 36065 f1omptsnlem 36217 f1omptsn 36218 rdgeqoa 36251 poimirlem4 36492 poimirlem26 36514 poimirlem27 36515 ismtyval 36668 extep 37151 brdmqss 37516 wepwsolem 41784 fnwe2val 41791 aomclem8 41803 onsucf1o 42022 relexp0eq 42452 sprsymrelf1 46164 fmtnof1 46203 fmtnofac1 46238 prmdvdsfmtnof1 46255 sfprmdvdsmersenne 46271 isupwlk 46514 uspgrsprf1 46525 ismgmhm 46553 rngqiprngimfo 46786 pzriprnglem11 46815 2zlidl 46832 rrx2xpref1o 47404 rrx2plord 47406 rrx2plordisom 47409 sphere 47433 line2ylem 47437 |
Copyright terms: Public domain | W3C validator |