| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2753. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2736 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2745 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 |
| This theorem is referenced by: eqeqan12rd 2749 eqeq12d 2750 eqeq12 2751 eqfnfv2 7033 f1mpt 7264 soisores 7330 xpopth 8038 f1o2ndf1 8130 fnwelem 8139 fnse 8141 tz7.48lem 8464 ecopoveq 8841 xpdom2 9090 unfilem2 9327 wemaplem1 9569 suc11reg 9642 oemapval 9706 cantnf 9716 wemapwe 9720 r0weon 10035 infxpen 10037 fodomacn 10079 sornom 10300 fin1a2lem2 10424 fin1a2lem4 10426 neg11 11543 subeqrev 11668 rpnnen1lem6 13007 cnref1o 13010 xneg11 13240 injresinj 13810 modadd1 13931 modmul1 13948 modlteq 13969 sq11 14154 hashen 14369 fz1eqb 14376 eqwrd 14578 s111 14636 ccatopth 14737 wrd2ind 14744 wwlktovf1 14979 cj11 15184 sqrt11 15284 sqabs 15329 recan 15358 reeff1 16139 efieq 16182 eulerthlem2 16802 vdwlem12 17013 xpsff1o 17588 ismgmhm 18683 ismhm 18772 isghm 19207 gsmsymgreq 19423 symgfixf1 19428 odf1 19553 sylow1 19594 frgpuplem 19763 isdomn 20678 rngqiprngimfo 21278 pzriprnglem11 21469 cygznlem3 21555 psgnghm 21565 tgtop11 22955 fclsval 23981 vitali 25603 recosf1o 26532 mpodvdsmulf1o 27192 dvdsmulf1o 27194 fsumvma 27212 negs11 28036 brcgr 28864 axlowdimlem15 28920 axcontlem1 28928 axcontlem4 28931 axcontlem7 28934 axcontlem8 28935 iswlk 29575 wlkswwlksf1o 29846 wwlksnextinj 29866 clwlkclwwlkf1 29976 clwwlkf1 30015 numclwwlkqhash 30341 grpoinvf 30498 hial2eq2 31073 qusker 33318 bnj554 34854 erdszelem9 35145 sategoelfvb 35365 mrsubff1 35460 msubff1 35502 mvhf1 35505 fneval 36294 topfneec2 36298 bj-imdirval3 37126 f1omptsnlem 37278 f1omptsn 37279 rdgeqoa 37312 poimirlem4 37572 poimirlem26 37594 poimirlem27 37595 ismtyval 37748 extep 38225 brdmqss 38588 fimgmcyc 42489 sn-isghm 42628 wepwsolem 42999 fnwe2val 43006 aomclem8 43018 onsucf1o 43230 relexp0eq 43659 sprsymrelf1 47429 fmtnof1 47468 fmtnofac1 47503 prmdvdsfmtnof1 47520 sfprmdvdsmersenne 47536 gpgedgvtx0 47965 isupwlk 47998 uspgrsprf1 48009 2zlidl 48102 rrx2xpref1o 48585 rrx2plord 48587 rrx2plordisom 48590 sphere 48614 line2ylem 48618 |
| Copyright terms: Public domain | W3C validator |