| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2748. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2740 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqeqan12rd 2744 eqeq12d 2745 eqeq12 2746 eqfnfv2 7004 f1mpt 7236 soisores 7302 xpopth 8009 f1o2ndf1 8101 fnwelem 8110 fnse 8112 tz7.48lem 8409 ecopoveq 8791 xpdom2 9036 unfilem2 9255 wemaplem1 9499 suc11reg 9572 oemapval 9636 cantnf 9646 wemapwe 9650 r0weon 9965 infxpen 9967 fodomacn 10009 sornom 10230 fin1a2lem2 10354 fin1a2lem4 10356 neg11 11473 subeqrev 11600 rpnnen1lem6 12941 cnref1o 12944 xneg11 13175 injresinj 13749 modadd1 13870 modaddid 13872 modmul1 13889 modlteq 13910 sq11 14096 hashen 14312 fz1eqb 14319 eqwrd 14522 s111 14580 ccatopth 14681 wrd2ind 14688 wwlktovf1 14923 cj11 15128 sqrt11 15228 sqabs 15273 recan 15303 reeff1 16088 efieq 16131 eulerthlem2 16752 vdwlem12 16963 xpsff1o 17530 ismgmhm 18623 ismhm 18712 isghm 19147 gsmsymgreq 19362 symgfixf1 19367 odf1 19492 sylow1 19533 frgpuplem 19702 isdomn 20614 rngqiprngimfo 21211 pzriprnglem11 21401 cygznlem3 21479 psgnghm 21489 tgtop11 22869 fclsval 23895 vitali 25514 recosf1o 26444 mpodvdsmulf1o 27104 dvdsmulf1o 27106 fsumvma 27124 negs11 27955 onsiso 28169 bdayn0sf1o 28259 brcgr 28827 axlowdimlem15 28883 axcontlem1 28891 axcontlem4 28894 axcontlem7 28897 axcontlem8 28898 iswlk 29538 wlkswwlksf1o 29809 wwlksnextinj 29829 clwlkclwwlkf1 29939 clwwlkf1 29978 numclwwlkqhash 30304 grpoinvf 30461 hial2eq2 31036 qusker 33320 bnj554 34889 erdszelem9 35186 sategoelfvb 35406 mrsubff1 35501 msubff1 35543 mvhf1 35546 fneval 36340 topfneec2 36344 bj-imdirval3 37172 f1omptsnlem 37324 f1omptsn 37325 rdgeqoa 37358 poimirlem4 37618 poimirlem26 37640 poimirlem27 37641 ismtyval 37794 extep 38271 brdmqss 38637 fimgmcyc 42522 sn-isghm 42661 wepwsolem 43031 fnwe2val 43038 aomclem8 43050 onsucf1o 43261 relexp0eq 43690 sprsymrelf1 47497 fmtnof1 47536 fmtnofac1 47571 prmdvdsfmtnof1 47588 sfprmdvdsmersenne 47604 gpgedgvtx0 48052 isupwlk 48124 uspgrsprf1 48135 2zlidl 48228 rrx2xpref1o 48707 rrx2plord 48709 rrx2plordisom 48712 sphere 48736 line2ylem 48740 |
| Copyright terms: Public domain | W3C validator |