![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2754. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2734 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2743 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
5 | 2, 4 | sylan9bb 510 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 |
This theorem is referenced by: eqeqan12rd 2747 eqeq12d 2748 eqeq12 2749 eqfnfv2 7033 f1mpt 7262 soisores 7326 xpopth 8018 f1o2ndf1 8110 fnwelem 8119 fnse 8121 tz7.48lem 8443 ecopoveq 8814 xpdom2 9069 unfilem2 9313 wemaplem1 9543 suc11reg 9616 oemapval 9680 cantnf 9690 wemapwe 9694 r0weon 10009 infxpen 10011 fodomacn 10053 sornom 10274 fin1a2lem2 10398 fin1a2lem4 10400 neg11 11513 subeqrev 11638 rpnnen1lem6 12968 cnref1o 12971 xneg11 13196 injresinj 13755 modadd1 13875 modmul1 13891 modlteq 13912 sq11 14098 hashen 14309 fz1eqb 14316 eqwrd 14509 s111 14567 ccatopth 14668 wrd2ind 14675 wwlktovf1 14910 cj11 15111 sqrt11 15211 sqabs 15256 recan 15285 reeff1 16065 efieq 16108 eulerthlem2 16717 vdwlem12 16927 xpsff1o 17515 ismhm 18675 gsmsymgreq 19302 symgfixf1 19307 odf1 19432 sylow1 19473 frgpuplem 19642 isdomn 20916 cygznlem3 21131 psgnghm 21139 tgtop11 22492 fclsval 23519 vitali 25137 recosf1o 26051 dvdsmulf1o 26705 fsumvma 26723 negs11 27533 brcgr 28196 axlowdimlem15 28252 axcontlem1 28260 axcontlem4 28263 axcontlem7 28266 axcontlem8 28267 iswlk 28905 wlkswwlksf1o 29171 wwlksnextinj 29191 clwlkclwwlkf1 29301 clwwlkf1 29340 numclwwlkqhash 29666 grpoinvf 29823 hial2eq2 30398 qusker 32505 bnj554 33979 erdszelem9 34259 sategoelfvb 34479 mrsubff1 34574 msubff1 34616 mvhf1 34619 fneval 35323 topfneec2 35327 bj-imdirval3 36151 f1omptsnlem 36303 f1omptsn 36304 rdgeqoa 36337 poimirlem4 36578 poimirlem26 36600 poimirlem27 36601 ismtyval 36754 extep 37237 brdmqss 37602 wepwsolem 41866 fnwe2val 41873 aomclem8 41885 onsucf1o 42104 relexp0eq 42534 sprsymrelf1 46243 fmtnof1 46282 fmtnofac1 46317 prmdvdsfmtnof1 46334 sfprmdvdsmersenne 46350 isupwlk 46593 uspgrsprf1 46604 ismgmhm 46632 rngqiprngimfo 46865 pzriprnglem11 46894 2zlidl 46911 rrx2xpref1o 47482 rrx2plord 47484 rrx2plordisom 47487 sphere 47511 line2ylem 47515 |
Copyright terms: Public domain | W3C validator |