| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version | ||
| Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2750. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqeq1d 2733 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
| 3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 4 | 3 | eqeq2d 2742 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
| 5 | 2, 4 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: eqeqan12rd 2746 eqeq12d 2747 eqeq12 2748 eqfnfv2 6965 f1mpt 7195 soisores 7261 xpopth 7962 f1o2ndf1 8052 fnwelem 8061 fnse 8063 tz7.48lem 8360 ecopoveq 8742 xpdom2 8985 unfilem2 9190 wemaplem1 9432 suc11reg 9509 oemapval 9573 cantnf 9583 wemapwe 9587 r0weon 9903 infxpen 9905 fodomacn 9947 sornom 10168 fin1a2lem2 10292 fin1a2lem4 10294 neg11 11412 subeqrev 11539 rpnnen1lem6 12880 cnref1o 12883 xneg11 13114 injresinj 13691 modadd1 13812 modaddid 13814 modmul1 13831 modlteq 13852 sq11 14038 hashen 14254 fz1eqb 14261 eqwrd 14464 s111 14523 ccatopth 14623 wrd2ind 14630 wwlktovf1 14864 cj11 15069 sqrt11 15169 sqabs 15214 recan 15244 reeff1 16029 efieq 16072 eulerthlem2 16693 vdwlem12 16904 xpsff1o 17471 ismgmhm 18604 ismhm 18693 isghm 19128 gsmsymgreq 19345 symgfixf1 19350 odf1 19475 sylow1 19516 frgpuplem 19685 isdomn 20621 rngqiprngimfo 21239 pzriprnglem11 21429 cygznlem3 21507 psgnghm 21518 tgtop11 22898 fclsval 23924 vitali 25542 recosf1o 26472 mpodvdsmulf1o 27132 dvdsmulf1o 27134 fsumvma 27152 negs11 27992 onsiso 28206 bdayn0sf1o 28296 brcgr 28879 axlowdimlem15 28935 axcontlem1 28943 axcontlem4 28946 axcontlem7 28949 axcontlem8 28950 iswlk 29590 wlkswwlksf1o 29858 wwlksnextinj 29878 clwlkclwwlkf1 29988 clwwlkf1 30027 numclwwlkqhash 30353 grpoinvf 30510 hial2eq2 31085 qusker 33312 bnj554 34909 erdszelem9 35241 sategoelfvb 35461 mrsubff1 35556 msubff1 35598 mvhf1 35601 fneval 36392 topfneec2 36396 bj-imdirval3 37224 f1omptsnlem 37376 f1omptsn 37377 rdgeqoa 37410 poimirlem4 37670 poimirlem26 37692 poimirlem27 37693 ismtyval 37846 extep 38323 brdmqss 38689 fimgmcyc 42573 sn-isghm 42712 wepwsolem 43081 fnwe2val 43088 aomclem8 43100 onsucf1o 43311 relexp0eq 43740 sprsymrelf1 47533 fmtnof1 47572 fmtnofac1 47607 prmdvdsfmtnof1 47624 sfprmdvdsmersenne 47640 gpgedgvtx0 48098 isupwlk 48173 uspgrsprf1 48184 2zlidl 48277 rrx2xpref1o 48756 rrx2plord 48758 rrx2plordisom 48761 sphere 48785 line2ylem 48789 |
| Copyright terms: Public domain | W3C validator |