![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2750. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2730 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | eqeq2d 2739 | . 2 ⊢ (𝜓 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) |
5 | 2, 4 | sylan9bb 508 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2720 |
This theorem is referenced by: eqeqan12rd 2743 eqeq12d 2744 eqeq12 2745 eqfnfv2 7046 f1mpt 7277 soisores 7341 xpopth 8040 f1o2ndf1 8133 fnwelem 8142 fnse 8144 tz7.48lem 8468 ecopoveq 8843 xpdom2 9098 unfilem2 9342 wemaplem1 9577 suc11reg 9650 oemapval 9714 cantnf 9724 wemapwe 9728 r0weon 10043 infxpen 10045 fodomacn 10087 sornom 10308 fin1a2lem2 10432 fin1a2lem4 10434 neg11 11549 subeqrev 11674 rpnnen1lem6 13004 cnref1o 13007 xneg11 13234 injresinj 13793 modadd1 13913 modmul1 13929 modlteq 13950 sq11 14135 hashen 14346 fz1eqb 14353 eqwrd 14547 s111 14605 ccatopth 14706 wrd2ind 14713 wwlktovf1 14948 cj11 15149 sqrt11 15249 sqabs 15294 recan 15323 reeff1 16104 efieq 16147 eulerthlem2 16758 vdwlem12 16968 xpsff1o 17556 ismgmhm 18663 ismhm 18749 gsmsymgreq 19394 symgfixf1 19399 odf1 19524 sylow1 19565 frgpuplem 19734 rngqiprngimfo 21198 isdomn 21248 pzriprnglem11 21424 cygznlem3 21510 psgnghm 21519 tgtop11 22905 fclsval 23932 vitali 25562 recosf1o 26489 mpodvdsmulf1o 27146 dvdsmulf1o 27148 fsumvma 27166 negs11 27981 brcgr 28731 axlowdimlem15 28787 axcontlem1 28795 axcontlem4 28798 axcontlem7 28801 axcontlem8 28802 iswlk 29444 wlkswwlksf1o 29710 wwlksnextinj 29730 clwlkclwwlkf1 29840 clwwlkf1 29879 numclwwlkqhash 30205 grpoinvf 30362 hial2eq2 30937 qusker 33085 bnj554 34563 erdszelem9 34842 sategoelfvb 35062 mrsubff1 35157 msubff1 35199 mvhf1 35202 fneval 35869 topfneec2 35873 bj-imdirval3 36696 f1omptsnlem 36848 f1omptsn 36849 rdgeqoa 36882 poimirlem4 37130 poimirlem26 37152 poimirlem27 37153 ismtyval 37306 extep 37787 brdmqss 38150 wepwsolem 42497 fnwe2val 42504 aomclem8 42516 onsucf1o 42732 relexp0eq 43162 sprsymrelf1 46865 fmtnof1 46904 fmtnofac1 46939 prmdvdsfmtnof1 46956 sfprmdvdsmersenne 46972 isupwlk 47276 uspgrsprf1 47287 2zlidl 47380 rrx2xpref1o 47869 rrx2plord 47871 rrx2plordisom 47874 sphere 47898 line2ylem 47902 |
Copyright terms: Public domain | W3C validator |