MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrnq Structured version   Visualization version   GIF version

Theorem distrnq 10648
Description: Multiplication of positive fractions is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrnq (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶))

Proof of Theorem distrnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcompi 10583 . . . . . . . . . . . . 13 ((1st𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (1st𝐴))
21oveq1i 7265 . . . . . . . . . . . 12 (((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) = (((1st𝐵) ·N (1st𝐴)) ·N ((2nd𝐴) ·N (2nd𝐶)))
3 fvex 6769 . . . . . . . . . . . . 13 (1st𝐵) ∈ V
4 fvex 6769 . . . . . . . . . . . . 13 (1st𝐴) ∈ V
5 fvex 6769 . . . . . . . . . . . . 13 (2nd𝐴) ∈ V
6 mulcompi 10583 . . . . . . . . . . . . 13 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
7 mulasspi 10584 . . . . . . . . . . . . 13 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
8 fvex 6769 . . . . . . . . . . . . 13 (2nd𝐶) ∈ V
93, 4, 5, 6, 7, 8caov411 7482 . . . . . . . . . . . 12 (((1st𝐵) ·N (1st𝐴)) ·N ((2nd𝐴) ·N (2nd𝐶))) = (((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
102, 9eqtri 2766 . . . . . . . . . . 11 (((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) = (((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
11 mulcompi 10583 . . . . . . . . . . . . 13 ((1st𝐴) ·N (1st𝐶)) = ((1st𝐶) ·N (1st𝐴))
1211oveq1i 7265 . . . . . . . . . . . 12 (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐴) ·N (2nd𝐵)))
13 fvex 6769 . . . . . . . . . . . . 13 (1st𝐶) ∈ V
14 fvex 6769 . . . . . . . . . . . . 13 (2nd𝐵) ∈ V
1513, 4, 5, 6, 7, 14caov411 7482 . . . . . . . . . . . 12 (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
1612, 15eqtri 2766 . . . . . . . . . . 11 (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵))) = (((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
1710, 16oveq12i 7267 . . . . . . . . . 10 ((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))) +N (((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))))
18 distrpi 10585 . . . . . . . . . 10 (((2nd𝐴) ·N (1st𝐴)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) = ((((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))) +N (((2nd𝐴) ·N (1st𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))))
19 mulasspi 10584 . . . . . . . . . 10 (((2nd𝐴) ·N (1st𝐴)) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) = ((2nd𝐴) ·N ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))))
2017, 18, 193eqtr2i 2772 . . . . . . . . 9 ((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))) = ((2nd𝐴) ·N ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))))
21 mulasspi 10584 . . . . . . . . . 10 (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) = ((2nd𝐴) ·N ((2nd𝐵) ·N ((2nd𝐴) ·N (2nd𝐶))))
2214, 5, 8, 6, 7caov12 7478 . . . . . . . . . . 11 ((2nd𝐵) ·N ((2nd𝐴) ·N (2nd𝐶))) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
2322oveq2i 7266 . . . . . . . . . 10 ((2nd𝐴) ·N ((2nd𝐵) ·N ((2nd𝐴) ·N (2nd𝐶)))) = ((2nd𝐴) ·N ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))))
2421, 23eqtri 2766 . . . . . . . . 9 (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) = ((2nd𝐴) ·N ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))))
2520, 24opeq12i 4806 . . . . . . . 8 ⟨((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶)))⟩ = ⟨((2nd𝐴) ·N ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))), ((2nd𝐴) ·N ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))))⟩
26 elpqn 10612 . . . . . . . . . . 11 (𝐴Q𝐴 ∈ (N × N))
27263ad2ant1 1131 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
28 xp2nd 7837 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
2927, 28syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
30 xp1st 7836 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
3127, 30syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
32 elpqn 10612 . . . . . . . . . . . . . 14 (𝐵Q𝐵 ∈ (N × N))
33323ad2ant2 1132 . . . . . . . . . . . . 13 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
34 xp1st 7836 . . . . . . . . . . . . 13 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
3533, 34syl 17 . . . . . . . . . . . 12 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
36 elpqn 10612 . . . . . . . . . . . . . 14 (𝐶Q𝐶 ∈ (N × N))
37363ad2ant3 1133 . . . . . . . . . . . . 13 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
38 xp2nd 7837 . . . . . . . . . . . . 13 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
3937, 38syl 17 . . . . . . . . . . . 12 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
40 mulclpi 10580 . . . . . . . . . . . 12 (((1st𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
4135, 39, 40syl2anc 583 . . . . . . . . . . 11 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (2nd𝐶)) ∈ N)
42 xp1st 7836 . . . . . . . . . . . . 13 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
4337, 42syl 17 . . . . . . . . . . . 12 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
44 xp2nd 7837 . . . . . . . . . . . . 13 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
4533, 44syl 17 . . . . . . . . . . . 12 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
46 mulclpi 10580 . . . . . . . . . . . 12 (((1st𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
4743, 45, 46syl2anc 583 . . . . . . . . . . 11 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐵)) ∈ N)
48 addclpi 10579 . . . . . . . . . . 11 ((((1st𝐵) ·N (2nd𝐶)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐵)) ∈ N) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
4941, 47, 48syl2anc 583 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N)
50 mulclpi 10580 . . . . . . . . . 10 (((1st𝐴) ∈ N ∧ (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N) → ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) ∈ N)
5131, 49, 50syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) ∈ N)
52 mulclpi 10580 . . . . . . . . . . 11 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
5345, 39, 52syl2anc 583 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
54 mulclpi 10580 . . . . . . . . . 10 (((2nd𝐴) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N) → ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) ∈ N)
5529, 53, 54syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) ∈ N)
56 mulcanenq 10647 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))) ∈ N ∧ ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))) ∈ N) → ⟨((2nd𝐴) ·N ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))), ((2nd𝐴) ·N ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))))⟩ ~Q ⟨((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
5729, 51, 55, 56syl3anc 1369 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ⟨((2nd𝐴) ·N ((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))))), ((2nd𝐴) ·N ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶))))⟩ ~Q ⟨((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
5825, 57eqbrtrid 5105 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ⟨((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶)))⟩ ~Q ⟨((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
59 mulpipq2 10626 . . . . . . . . . 10 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
6027, 33, 59syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
61 mulpipq2 10626 . . . . . . . . . 10 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
6227, 37, 61syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐶) = ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩)
6360, 62oveq12d 7273 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) = (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩))
64 mulclpi 10580 . . . . . . . . . 10 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
6531, 35, 64syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
66 mulclpi 10580 . . . . . . . . . 10 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
6729, 45, 66syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
68 mulclpi 10580 . . . . . . . . . 10 (((1st𝐴) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
6931, 43, 68syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐶)) ∈ N)
70 mulclpi 10580 . . . . . . . . . 10 (((2nd𝐴) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
7129, 39, 70syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐶)) ∈ N)
72 addpipq 10624 . . . . . . . . 9 (((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ (((1st𝐴) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐶)) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩) = ⟨((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶)))⟩)
7365, 67, 69, 71, 72syl22anc 835 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ +pQ ⟨((1st𝐴) ·N (1st𝐶)), ((2nd𝐴) ·N (2nd𝐶))⟩) = ⟨((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶)))⟩)
7463, 73eqtrd 2778 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) = ⟨((((1st𝐴) ·N (1st𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶))) +N (((1st𝐴) ·N (1st𝐶)) ·N ((2nd𝐴) ·N (2nd𝐵)))), (((2nd𝐴) ·N (2nd𝐵)) ·N ((2nd𝐴) ·N (2nd𝐶)))⟩)
75 relxp 5598 . . . . . . . . . 10 Rel (N × N)
76 1st2nd 7853 . . . . . . . . . 10 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
7775, 27, 76sylancr 586 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
78 addpipq2 10623 . . . . . . . . . 10 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
7933, 37, 78syl2anc 583 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +pQ 𝐶) = ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩)
8077, 79oveq12d 7273 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 +pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩))
81 mulpipq 10627 . . . . . . . . 9 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
8231, 29, 49, 53, 81syl22anc 835 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨(((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵))), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
8380, 82eqtrd 2778 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 +pQ 𝐶)) = ⟨((1st𝐴) ·N (((1st𝐵) ·N (2nd𝐶)) +N ((1st𝐶) ·N (2nd𝐵)))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
8458, 74, 833brtr4d 5102 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) ~Q (𝐴 ·pQ (𝐵 +pQ 𝐶)))
85 mulpqf 10633 . . . . . . . . . 10 ·pQ :((N × N) × (N × N))⟶(N × N)
8685fovcl 7380 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
8727, 33, 86syl2anc 583 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) ∈ (N × N))
8885fovcl 7380 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ·pQ 𝐶) ∈ (N × N))
8927, 37, 88syl2anc 583 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐶) ∈ (N × N))
90 addpqf 10631 . . . . . . . . 9 +pQ :((N × N) × (N × N))⟶(N × N)
9190fovcl 7380 . . . . . . . 8 (((𝐴 ·pQ 𝐵) ∈ (N × N) ∧ (𝐴 ·pQ 𝐶) ∈ (N × N)) → ((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) ∈ (N × N))
9287, 89, 91syl2anc 583 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) ∈ (N × N))
9390fovcl 7380 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 +pQ 𝐶) ∈ (N × N))
9433, 37, 93syl2anc 583 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +pQ 𝐶) ∈ (N × N))
9585fovcl 7380 . . . . . . . 8 ((𝐴 ∈ (N × N) ∧ (𝐵 +pQ 𝐶) ∈ (N × N)) → (𝐴 ·pQ (𝐵 +pQ 𝐶)) ∈ (N × N))
9627, 94, 95syl2anc 583 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 +pQ 𝐶)) ∈ (N × N))
97 nqereq 10622 . . . . . . 7 ((((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) ∈ (N × N) ∧ (𝐴 ·pQ (𝐵 +pQ 𝐶)) ∈ (N × N)) → (((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) ~Q (𝐴 ·pQ (𝐵 +pQ 𝐶)) ↔ ([Q]‘((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 +pQ 𝐶)))))
9892, 96, 97syl2anc 583 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)) ~Q (𝐴 ·pQ (𝐵 +pQ 𝐶)) ↔ ([Q]‘((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 +pQ 𝐶)))))
9984, 98mpbid 231 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 +pQ 𝐶))))
10099eqcomd 2744 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘(𝐴 ·pQ (𝐵 +pQ 𝐶))) = ([Q]‘((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶))))
101 mulerpq 10644 . . . 4 (([Q]‘𝐴) ·Q ([Q]‘(𝐵 +pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 +pQ 𝐶)))
102 adderpq 10643 . . . 4 (([Q]‘(𝐴 ·pQ 𝐵)) +Q ([Q]‘(𝐴 ·pQ 𝐶))) = ([Q]‘((𝐴 ·pQ 𝐵) +pQ (𝐴 ·pQ 𝐶)))
103100, 101, 1023eqtr4g 2804 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘𝐴) ·Q ([Q]‘(𝐵 +pQ 𝐶))) = (([Q]‘(𝐴 ·pQ 𝐵)) +Q ([Q]‘(𝐴 ·pQ 𝐶))))
104 nqerid 10620 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
105104eqcomd 2744 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
1061053ad2ant1 1131 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
107 addpqnq 10625 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 +Q 𝐶) = ([Q]‘(𝐵 +pQ 𝐶)))
1081073adant1 1128 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 +Q 𝐶) = ([Q]‘(𝐵 +pQ 𝐶)))
109106, 108oveq12d 7273 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 +pQ 𝐶))))
110 mulpqnq 10628 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
1111103adant3 1130 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
112 mulpqnq 10628 . . . . 5 ((𝐴Q𝐶Q) → (𝐴 ·Q 𝐶) = ([Q]‘(𝐴 ·pQ 𝐶)))
1131123adant2 1129 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐶) = ([Q]‘(𝐴 ·pQ 𝐶)))
114111, 113oveq12d 7273 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)) = (([Q]‘(𝐴 ·pQ 𝐵)) +Q ([Q]‘(𝐴 ·pQ 𝐶))))
115103, 109, 1143eqtr4d 2788 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))
116 addnqf 10635 . . . 4 +Q :(Q × Q)⟶Q
117116fdmi 6596 . . 3 dom +Q = (Q × Q)
118 0nnq 10611 . . 3 ¬ ∅ ∈ Q
119 mulnqf 10636 . . . 4 ·Q :(Q × Q)⟶Q
120119fdmi 6596 . . 3 dom ·Q = (Q × Q)
121117, 118, 120ndmovdistr 7439 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)))
122115, 121pm2.61i 182 1 (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070   × cxp 5578  Rel wrel 5585  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Ncnpi 10531   +N cpli 10532   ·N cmi 10533   +pQ cplpq 10535   ·pQ cmpq 10536   ~Q ceq 10538  Qcnq 10539  [Q]cerq 10541   +Q cplq 10542   ·Q cmq 10543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603
This theorem is referenced by:  ltaddnq  10661  halfnq  10663  addclprlem2  10704  distrlem1pr  10712  distrlem4pr  10713  prlem934  10720  prlem936  10734
  Copyright terms: Public domain W3C validator