MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltanq Structured version   Visualization version   GIF version

Theorem ltanq 11005
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltanq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))

Proof of Theorem ltanq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addnqf 10982 . . 3 +Q :(Q × Q)⟶Q
21fdmi 6731 . 2 dom +Q = (Q × Q)
3 ltrelnq 10960 . 2 <Q ⊆ (Q × Q)
4 0nnq 10958 . 2 ¬ ∅ ∈ Q
5 ordpinq 10977 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
653adant3 1129 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
7 elpqn 10959 . . . . . . 7 (𝐶Q𝐶 ∈ (N × N))
873ad2ant3 1132 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
9 elpqn 10959 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
1093ad2ant1 1130 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
11 addpipq2 10970 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 +pQ 𝐴) = ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩)
128, 10, 11syl2anc 582 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +pQ 𝐴) = ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩)
13 elpqn 10959 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
14133ad2ant2 1131 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
15 addpipq2 10970 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 +pQ 𝐵) = ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩)
168, 14, 15syl2anc 582 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +pQ 𝐵) = ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩)
1712, 16breq12d 5158 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵) ↔ ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩))
18 addpqnq 10972 . . . . . . . 8 ((𝐶Q𝐴Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
1918ancoms 457 . . . . . . 7 ((𝐴Q𝐶Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
20193adant2 1128 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
21 addpqnq 10972 . . . . . . . 8 ((𝐶Q𝐵Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
2221ancoms 457 . . . . . . 7 ((𝐵Q𝐶Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
23223adant1 1127 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
2420, 23breq12d 5158 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ ([Q]‘(𝐶 +pQ 𝐴)) <Q ([Q]‘(𝐶 +pQ 𝐵))))
25 lterpq 11004 . . . . 5 ((𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵) ↔ ([Q]‘(𝐶 +pQ 𝐴)) <Q ([Q]‘(𝐶 +pQ 𝐵)))
2624, 25bitr4di 288 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ (𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵)))
27 xp2nd 8028 . . . . . . . . . 10 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
288, 27syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
29 mulclpi 10927 . . . . . . . . 9 (((2nd𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
3028, 28, 29syl2anc 582 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
31 ltmpi 10938 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
3230, 31syl 17 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
33 xp2nd 8028 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
3414, 33syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
35 mulclpi 10927 . . . . . . . . . 10 (((2nd𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐶) ·N (2nd𝐵)) ∈ N)
3628, 34, 35syl2anc 582 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐶) ·N (2nd𝐵)) ∈ N)
37 xp1st 8027 . . . . . . . . . . 11 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
388, 37syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
39 xp2nd 8028 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
4010, 39syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
41 mulclpi 10927 . . . . . . . . . 10 (((1st𝐶) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
4238, 40, 41syl2anc 582 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
43 mulclpi 10927 . . . . . . . . 9 ((((2nd𝐶) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐴)) ∈ N) → (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
4436, 42, 43syl2anc 582 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
45 ltapi 10937 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
4644, 45syl 17 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
4732, 46bitrd 278 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
48 mulcompi 10930 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶)))
49 fvex 6906 . . . . . . . . . . 11 (1st𝐴) ∈ V
50 fvex 6906 . . . . . . . . . . 11 (2nd𝐵) ∈ V
51 fvex 6906 . . . . . . . . . . 11 (2nd𝐶) ∈ V
52 mulcompi 10930 . . . . . . . . . . 11 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
53 mulasspi 10931 . . . . . . . . . . 11 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5449, 50, 51, 52, 53, 51caov411 7650 . . . . . . . . . 10 (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶)))
5548, 54eqtri 2754 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶)))
5655oveq2i 7427 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶))))
57 distrpi 10932 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐵)) ·N (((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶)))) = ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶))))
58 mulcompi 10930 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐵)) ·N (((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶)))) = ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵)))
5956, 57, 583eqtr2i 2760 . . . . . . 7 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵)))
60 mulcompi 10930 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
61 fvex 6906 . . . . . . . . . . 11 (1st𝐶) ∈ V
62 fvex 6906 . . . . . . . . . . 11 (2nd𝐴) ∈ V
6361, 62, 51, 52, 53, 50caov411 7650 . . . . . . . . . 10 (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
6460, 63eqtri 2754 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
65 mulcompi 10930 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐶)))
66 fvex 6906 . . . . . . . . . . 11 (1st𝐵) ∈ V
6766, 62, 51, 52, 53, 51caov411 7650 . . . . . . . . . 10 (((1st𝐵) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
6865, 67eqtri 2754 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
6964, 68oveq12i 7428 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))))
70 distrpi 10932 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐴)) ·N (((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶)))) = ((((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))))
71 mulcompi 10930 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐴)) ·N (((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶)))) = ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))
7269, 70, 713eqtr2i 2760 . . . . . . 7 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))
7359, 72breq12i 5154 . . . . . 6 (((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴))))
7447, 73bitrdi 286 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))))
75 ordpipq 10976 . . . . 5 (⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴))))
7674, 75bitr4di 288 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩))
7717, 26, 763bitr4rd 311 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
786, 77bitrd 278 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
792, 3, 4, 78ndmovord 7608 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1534  wcel 2099  cop 4629   class class class wbr 5145   × cxp 5672  cfv 6546  (class class class)co 7416  1st c1st 7993  2nd c2nd 7994  Ncnpi 10878   +N cpli 10879   ·N cmi 10880   <N clti 10881   +pQ cplpq 10882   <pQ cltpq 10884  Qcnq 10886  [Q]cerq 10888   +Q cplq 10889   <Q cltq 10892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-omul 8493  df-er 8726  df-ni 10906  df-pli 10907  df-mi 10908  df-lti 10909  df-plpq 10942  df-ltpq 10944  df-enq 10945  df-nq 10946  df-erq 10947  df-plq 10948  df-1nq 10950  df-ltnq 10952
This theorem is referenced by:  ltaddnq  11008  ltbtwnnq  11012  addclpr  11052  distrlem4pr  11060  ltexprlem3  11072  ltexprlem4  11073  ltexprlem6  11075  prlem936  11081
  Copyright terms: Public domain W3C validator