MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltanq Structured version   Visualization version   GIF version

Theorem ltanq 11009
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltanq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))

Proof of Theorem ltanq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addnqf 10986 . . 3 +Q :(Q × Q)⟶Q
21fdmi 6748 . 2 dom +Q = (Q × Q)
3 ltrelnq 10964 . 2 <Q ⊆ (Q × Q)
4 0nnq 10962 . 2 ¬ ∅ ∈ Q
5 ordpinq 10981 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
653adant3 1131 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
7 elpqn 10963 . . . . . . 7 (𝐶Q𝐶 ∈ (N × N))
873ad2ant3 1134 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
9 elpqn 10963 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
1093ad2ant1 1132 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
11 addpipq2 10974 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 +pQ 𝐴) = ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩)
128, 10, 11syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +pQ 𝐴) = ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩)
13 elpqn 10963 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
14133ad2ant2 1133 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
15 addpipq2 10974 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 +pQ 𝐵) = ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩)
168, 14, 15syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +pQ 𝐵) = ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩)
1712, 16breq12d 5161 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵) ↔ ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩))
18 addpqnq 10976 . . . . . . . 8 ((𝐶Q𝐴Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
1918ancoms 458 . . . . . . 7 ((𝐴Q𝐶Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
20193adant2 1130 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
21 addpqnq 10976 . . . . . . . 8 ((𝐶Q𝐵Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
2221ancoms 458 . . . . . . 7 ((𝐵Q𝐶Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
23223adant1 1129 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
2420, 23breq12d 5161 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ ([Q]‘(𝐶 +pQ 𝐴)) <Q ([Q]‘(𝐶 +pQ 𝐵))))
25 lterpq 11008 . . . . 5 ((𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵) ↔ ([Q]‘(𝐶 +pQ 𝐴)) <Q ([Q]‘(𝐶 +pQ 𝐵)))
2624, 25bitr4di 289 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ (𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵)))
27 xp2nd 8046 . . . . . . . . . 10 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
288, 27syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
29 mulclpi 10931 . . . . . . . . 9 (((2nd𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
3028, 28, 29syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
31 ltmpi 10942 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
3230, 31syl 17 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
33 xp2nd 8046 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
3414, 33syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
35 mulclpi 10931 . . . . . . . . . 10 (((2nd𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐶) ·N (2nd𝐵)) ∈ N)
3628, 34, 35syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐶) ·N (2nd𝐵)) ∈ N)
37 xp1st 8045 . . . . . . . . . . 11 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
388, 37syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
39 xp2nd 8046 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
4010, 39syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
41 mulclpi 10931 . . . . . . . . . 10 (((1st𝐶) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
4238, 40, 41syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
43 mulclpi 10931 . . . . . . . . 9 ((((2nd𝐶) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐴)) ∈ N) → (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
4436, 42, 43syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
45 ltapi 10941 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
4644, 45syl 17 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
4732, 46bitrd 279 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
48 mulcompi 10934 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶)))
49 fvex 6920 . . . . . . . . . . 11 (1st𝐴) ∈ V
50 fvex 6920 . . . . . . . . . . 11 (2nd𝐵) ∈ V
51 fvex 6920 . . . . . . . . . . 11 (2nd𝐶) ∈ V
52 mulcompi 10934 . . . . . . . . . . 11 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
53 mulasspi 10935 . . . . . . . . . . 11 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5449, 50, 51, 52, 53, 51caov411 7665 . . . . . . . . . 10 (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶)))
5548, 54eqtri 2763 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶)))
5655oveq2i 7442 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶))))
57 distrpi 10936 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐵)) ·N (((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶)))) = ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶))))
58 mulcompi 10934 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐵)) ·N (((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶)))) = ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵)))
5956, 57, 583eqtr2i 2769 . . . . . . 7 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵)))
60 mulcompi 10934 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
61 fvex 6920 . . . . . . . . . . 11 (1st𝐶) ∈ V
62 fvex 6920 . . . . . . . . . . 11 (2nd𝐴) ∈ V
6361, 62, 51, 52, 53, 50caov411 7665 . . . . . . . . . 10 (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
6460, 63eqtri 2763 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
65 mulcompi 10934 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐶)))
66 fvex 6920 . . . . . . . . . . 11 (1st𝐵) ∈ V
6766, 62, 51, 52, 53, 51caov411 7665 . . . . . . . . . 10 (((1st𝐵) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
6865, 67eqtri 2763 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
6964, 68oveq12i 7443 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))))
70 distrpi 10936 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐴)) ·N (((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶)))) = ((((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))))
71 mulcompi 10934 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐴)) ·N (((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶)))) = ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))
7269, 70, 713eqtr2i 2769 . . . . . . 7 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))
7359, 72breq12i 5157 . . . . . 6 (((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴))))
7447, 73bitrdi 287 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))))
75 ordpipq 10980 . . . . 5 (⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴))))
7674, 75bitr4di 289 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩))
7717, 26, 763bitr4rd 312 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
786, 77bitrd 279 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
792, 3, 4, 78ndmovord 7623 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  cop 4637   class class class wbr 5148   × cxp 5687  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  Ncnpi 10882   +N cpli 10883   ·N cmi 10884   <N clti 10885   +pQ cplpq 10886   <pQ cltpq 10888  Qcnq 10890  [Q]cerq 10892   +Q cplq 10893   <Q cltq 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-1nq 10954  df-ltnq 10956
This theorem is referenced by:  ltaddnq  11012  ltbtwnnq  11016  addclpr  11056  distrlem4pr  11064  ltexprlem3  11076  ltexprlem4  11077  ltexprlem6  11079  prlem936  11085
  Copyright terms: Public domain W3C validator