MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltanq Structured version   Visualization version   GIF version

Theorem ltanq 10862
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltanq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))

Proof of Theorem ltanq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addnqf 10839 . . 3 +Q :(Q × Q)⟶Q
21fdmi 6662 . 2 dom +Q = (Q × Q)
3 ltrelnq 10817 . 2 <Q ⊆ (Q × Q)
4 0nnq 10815 . 2 ¬ ∅ ∈ Q
5 ordpinq 10834 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
653adant3 1132 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
7 elpqn 10816 . . . . . . 7 (𝐶Q𝐶 ∈ (N × N))
873ad2ant3 1135 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
9 elpqn 10816 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
1093ad2ant1 1133 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
11 addpipq2 10827 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 +pQ 𝐴) = ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩)
128, 10, 11syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +pQ 𝐴) = ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩)
13 elpqn 10816 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
14133ad2ant2 1134 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
15 addpipq2 10827 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 +pQ 𝐵) = ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩)
168, 14, 15syl2anc 584 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +pQ 𝐵) = ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩)
1712, 16breq12d 5102 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵) ↔ ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩))
18 addpqnq 10829 . . . . . . . 8 ((𝐶Q𝐴Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
1918ancoms 458 . . . . . . 7 ((𝐴Q𝐶Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
20193adant2 1131 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +Q 𝐴) = ([Q]‘(𝐶 +pQ 𝐴)))
21 addpqnq 10829 . . . . . . . 8 ((𝐶Q𝐵Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
2221ancoms 458 . . . . . . 7 ((𝐵Q𝐶Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
23223adant1 1130 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐶 +Q 𝐵) = ([Q]‘(𝐶 +pQ 𝐵)))
2420, 23breq12d 5102 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ ([Q]‘(𝐶 +pQ 𝐴)) <Q ([Q]‘(𝐶 +pQ 𝐵))))
25 lterpq 10861 . . . . 5 ((𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵) ↔ ([Q]‘(𝐶 +pQ 𝐴)) <Q ([Q]‘(𝐶 +pQ 𝐵)))
2624, 25bitr4di 289 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵) ↔ (𝐶 +pQ 𝐴) <pQ (𝐶 +pQ 𝐵)))
27 xp2nd 7954 . . . . . . . . . 10 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
288, 27syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
29 mulclpi 10784 . . . . . . . . 9 (((2nd𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
3028, 28, 29syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐶) ·N (2nd𝐶)) ∈ N)
31 ltmpi 10795 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
3230, 31syl 17 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
33 xp2nd 7954 . . . . . . . . . . 11 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
3414, 33syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
35 mulclpi 10784 . . . . . . . . . 10 (((2nd𝐶) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐶) ·N (2nd𝐵)) ∈ N)
3628, 34, 35syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐶) ·N (2nd𝐵)) ∈ N)
37 xp1st 7953 . . . . . . . . . . 11 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
388, 37syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
39 xp2nd 7954 . . . . . . . . . . 11 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
4010, 39syl 17 . . . . . . . . . 10 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
41 mulclpi 10784 . . . . . . . . . 10 (((1st𝐶) ∈ N ∧ (2nd𝐴) ∈ N) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
4238, 40, 41syl2anc 584 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐴)) ∈ N)
43 mulclpi 10784 . . . . . . . . 9 ((((2nd𝐶) ·N (2nd𝐵)) ∈ N ∧ ((1st𝐶) ·N (2nd𝐴)) ∈ N) → (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
4436, 42, 43syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N)
45 ltapi 10794 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) ∈ N → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
4644, 45syl 17 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
4732, 46bitrd 279 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))))))
48 mulcompi 10787 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶)))
49 fvex 6835 . . . . . . . . . . 11 (1st𝐴) ∈ V
50 fvex 6835 . . . . . . . . . . 11 (2nd𝐵) ∈ V
51 fvex 6835 . . . . . . . . . . 11 (2nd𝐶) ∈ V
52 mulcompi 10787 . . . . . . . . . . 11 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
53 mulasspi 10788 . . . . . . . . . . 11 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5449, 50, 51, 52, 53, 51caov411 7578 . . . . . . . . . 10 (((1st𝐴) ·N (2nd𝐵)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶)))
5548, 54eqtri 2754 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶)))
5655oveq2i 7357 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶))))
57 distrpi 10789 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐵)) ·N (((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶)))) = ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐴) ·N (2nd𝐶))))
58 mulcompi 10787 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐵)) ·N (((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶)))) = ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵)))
5956, 57, 583eqtr2i 2760 . . . . . . 7 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) = ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵)))
60 mulcompi 10787 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) = (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
61 fvex 6835 . . . . . . . . . . 11 (1st𝐶) ∈ V
62 fvex 6835 . . . . . . . . . . 11 (2nd𝐴) ∈ V
6361, 62, 51, 52, 53, 50caov411 7578 . . . . . . . . . 10 (((1st𝐶) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
6460, 63eqtri 2754 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵)))
65 mulcompi 10787 . . . . . . . . . 10 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐶)))
66 fvex 6835 . . . . . . . . . . 11 (1st𝐵) ∈ V
6766, 62, 51, 52, 53, 51caov411 7578 . . . . . . . . . 10 (((1st𝐵) ·N (2nd𝐴)) ·N ((2nd𝐶) ·N (2nd𝐶))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
6865, 67eqtri 2754 . . . . . . . . 9 (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶)))
6964, 68oveq12i 7358 . . . . . . . 8 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))))
70 distrpi 10789 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐴)) ·N (((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶)))) = ((((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐶) ·N (2nd𝐵))) +N (((2nd𝐶) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd𝐶))))
71 mulcompi 10787 . . . . . . . 8 (((2nd𝐶) ·N (2nd𝐴)) ·N (((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶)))) = ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))
7269, 70, 713eqtr2i 2760 . . . . . . 7 ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) = ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))
7359, 72breq12i 5098 . . . . . 6 (((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵)))) <N ((((2nd𝐶) ·N (2nd𝐵)) ·N ((1st𝐶) ·N (2nd𝐴))) +N (((2nd𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))) ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴))))
7447, 73bitrdi 287 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴)))))
75 ordpipq 10833 . . . . 5 (⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ ((((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐵))) <N ((((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))) ·N ((2nd𝐶) ·N (2nd𝐴))))
7674, 75bitr4di 289 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨(((1st𝐶) ·N (2nd𝐴)) +N ((1st𝐴) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨(((1st𝐶) ·N (2nd𝐵)) +N ((1st𝐵) ·N (2nd𝐶))), ((2nd𝐶) ·N (2nd𝐵))⟩))
7717, 26, 763bitr4rd 312 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
786, 77bitrd 279 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
792, 3, 4, 78ndmovord 7536 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  cop 4579   class class class wbr 5089   × cxp 5612  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Ncnpi 10735   +N cpli 10736   ·N cmi 10737   <N clti 10738   +pQ cplpq 10739   <pQ cltpq 10741  Qcnq 10743  [Q]cerq 10745   +Q cplq 10746   <Q cltq 10749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-1nq 10807  df-ltnq 10809
This theorem is referenced by:  ltaddnq  10865  ltbtwnnq  10869  addclpr  10909  distrlem4pr  10917  ltexprlem3  10929  ltexprlem4  10930  ltexprlem6  10932  prlem936  10938
  Copyright terms: Public domain W3C validator