Step | Hyp | Ref
| Expression |
1 | | df-ltpq 10524 |
. . . 4
⊢
<pQ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} |
2 | | opabssxp 5640 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} ⊆ ((N ×
N) × (N ×
N)) |
3 | 1, 2 | eqsstri 3935 |
. . 3
⊢
<pQ ⊆ ((N ×
N) × (N ×
N)) |
4 | 3 | brel 5614 |
. 2
⊢ (𝐴 <pQ
𝐵 → (𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N))) |
5 | | ltrelnq 10540 |
. . . 4
⊢
<Q ⊆ (Q ×
Q) |
6 | 5 | brel 5614 |
. . 3
⊢
(([Q]‘𝐴) <Q
([Q]‘𝐵)
→ (([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q)) |
7 | | elpqn 10539 |
. . . 4
⊢
(([Q]‘𝐴) ∈ Q →
([Q]‘𝐴)
∈ (N × N)) |
8 | | elpqn 10539 |
. . . 4
⊢
(([Q]‘𝐵) ∈ Q →
([Q]‘𝐵)
∈ (N × N)) |
9 | | nqerf 10544 |
. . . . . . 7
⊢
[Q]:(N ×
N)⟶Q |
10 | 9 | fdmi 6557 |
. . . . . 6
⊢ dom
[Q] = (N × N) |
11 | | 0nelxp 5585 |
. . . . . 6
⊢ ¬
∅ ∈ (N × N) |
12 | 10, 11 | ndmfvrcl 6748 |
. . . . 5
⊢
(([Q]‘𝐴) ∈ (N ×
N) → 𝐴
∈ (N × N)) |
13 | 10, 11 | ndmfvrcl 6748 |
. . . . 5
⊢
(([Q]‘𝐵) ∈ (N ×
N) → 𝐵
∈ (N × N)) |
14 | 12, 13 | anim12i 616 |
. . . 4
⊢
((([Q]‘𝐴) ∈ (N ×
N) ∧ ([Q]‘𝐵) ∈ (N ×
N)) → (𝐴
∈ (N × N) ∧ 𝐵 ∈ (N ×
N))) |
15 | 7, 8, 14 | syl2an 599 |
. . 3
⊢
((([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q) → (𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N))) |
16 | 6, 15 | syl 17 |
. 2
⊢
(([Q]‘𝐴) <Q
([Q]‘𝐵)
→ (𝐴 ∈
(N × N) ∧ 𝐵 ∈ (N ×
N))) |
17 | | xp1st 7793 |
. . . . 5
⊢ (𝐴 ∈ (N ×
N) → (1st ‘𝐴) ∈ N) |
18 | | xp2nd 7794 |
. . . . 5
⊢ (𝐵 ∈ (N ×
N) → (2nd ‘𝐵) ∈ N) |
19 | | mulclpi 10507 |
. . . . 5
⊢
(((1st ‘𝐴) ∈ N ∧
(2nd ‘𝐵)
∈ N) → ((1st ‘𝐴) ·N
(2nd ‘𝐵))
∈ N) |
20 | 17, 18, 19 | syl2an 599 |
. . . 4
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → ((1st
‘𝐴)
·N (2nd ‘𝐵)) ∈ N) |
21 | | ltmpi 10518 |
. . . 4
⊢
(((1st ‘𝐴) ·N
(2nd ‘𝐵))
∈ N → (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) <N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))) ↔ (((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) <N
(((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴)))))) |
22 | 20, 21 | syl 17 |
. . 3
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) <N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))) ↔ (((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) <N
(((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴)))))) |
23 | | nqercl 10545 |
. . . 4
⊢ (𝐴 ∈ (N ×
N) → ([Q]‘𝐴) ∈ Q) |
24 | | nqercl 10545 |
. . . 4
⊢ (𝐵 ∈ (N ×
N) → ([Q]‘𝐵) ∈ Q) |
25 | | ordpinq 10557 |
. . . 4
⊢
((([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q) → (([Q]‘𝐴) <Q
([Q]‘𝐵)
↔ ((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) <N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))))) |
26 | 23, 24, 25 | syl2an 599 |
. . 3
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
(([Q]‘𝐴) <Q
([Q]‘𝐵)
↔ ((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) <N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))))) |
27 | | 1st2nd2 7800 |
. . . . . 6
⊢ (𝐴 ∈ (N ×
N) → 𝐴 =
〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
28 | | 1st2nd2 7800 |
. . . . . 6
⊢ (𝐵 ∈ (N ×
N) → 𝐵 =
〈(1st ‘𝐵), (2nd ‘𝐵)〉) |
29 | 27, 28 | breqan12d 5069 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ 〈(1st
‘𝐴), (2nd
‘𝐴)〉
<pQ 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
30 | | ordpipq 10556 |
. . . . 5
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 <pQ
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴)
·N (2nd ‘𝐵)) <N
((1st ‘𝐵)
·N (2nd ‘𝐴))) |
31 | 29, 30 | bitrdi 290 |
. . . 4
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ((1st
‘𝐴)
·N (2nd ‘𝐵)) <N
((1st ‘𝐵)
·N (2nd ‘𝐴)))) |
32 | | xp1st 7793 |
. . . . . . 7
⊢
(([Q]‘𝐴) ∈ (N ×
N) → (1st ‘([Q]‘𝐴)) ∈
N) |
33 | 23, 7, 32 | 3syl 18 |
. . . . . 6
⊢ (𝐴 ∈ (N ×
N) → (1st ‘([Q]‘𝐴)) ∈
N) |
34 | | xp2nd 7794 |
. . . . . . 7
⊢
(([Q]‘𝐵) ∈ (N ×
N) → (2nd ‘([Q]‘𝐵)) ∈
N) |
35 | 24, 8, 34 | 3syl 18 |
. . . . . 6
⊢ (𝐵 ∈ (N ×
N) → (2nd ‘([Q]‘𝐵)) ∈
N) |
36 | | mulclpi 10507 |
. . . . . 6
⊢
(((1st ‘([Q]‘𝐴)) ∈ N ∧
(2nd ‘([Q]‘𝐵)) ∈ N) →
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ∈ N) |
37 | 33, 35, 36 | syl2an 599 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → ((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ∈ N) |
38 | | ltmpi 10518 |
. . . . 5
⊢
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ∈ N →
(((1st ‘𝐴)
·N (2nd ‘𝐵)) <N
((1st ‘𝐵)
·N (2nd ‘𝐴)) ↔ (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) <N
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐵)
·N (2nd ‘𝐴))))) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (((1st
‘𝐴)
·N (2nd ‘𝐵)) <N
((1st ‘𝐵)
·N (2nd ‘𝐴)) ↔ (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) <N
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐵)
·N (2nd ‘𝐴))))) |
40 | | mulcompi 10510 |
. . . . . 6
⊢
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) = (((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) |
41 | 40 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) = (((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))))) |
42 | | nqerrel 10546 |
. . . . . . . . 9
⊢ (𝐴 ∈ (N ×
N) → 𝐴
~Q ([Q]‘𝐴)) |
43 | 23, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (N ×
N) → ([Q]‘𝐴) ∈ (N ×
N)) |
44 | | enqbreq2 10534 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (N ×
N) ∧ ([Q]‘𝐴) ∈ (N ×
N)) → (𝐴
~Q ([Q]‘𝐴) ↔ ((1st ‘𝐴)
·N (2nd
‘([Q]‘𝐴))) = ((1st
‘([Q]‘𝐴)) ·N
(2nd ‘𝐴)))) |
45 | 43, 44 | mpdan 687 |
. . . . . . . . 9
⊢ (𝐴 ∈ (N ×
N) → (𝐴
~Q ([Q]‘𝐴) ↔ ((1st ‘𝐴)
·N (2nd
‘([Q]‘𝐴))) = ((1st
‘([Q]‘𝐴)) ·N
(2nd ‘𝐴)))) |
46 | 42, 45 | mpbid 235 |
. . . . . . . 8
⊢ (𝐴 ∈ (N ×
N) → ((1st ‘𝐴) ·N
(2nd ‘([Q]‘𝐴))) = ((1st
‘([Q]‘𝐴)) ·N
(2nd ‘𝐴))) |
47 | 46 | eqcomd 2743 |
. . . . . . 7
⊢ (𝐴 ∈ (N ×
N) → ((1st ‘([Q]‘𝐴))
·N (2nd ‘𝐴)) = ((1st ‘𝐴)
·N (2nd
‘([Q]‘𝐴)))) |
48 | | nqerrel 10546 |
. . . . . . . 8
⊢ (𝐵 ∈ (N ×
N) → 𝐵
~Q ([Q]‘𝐵)) |
49 | 24, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈ (N ×
N) → ([Q]‘𝐵) ∈ (N ×
N)) |
50 | | enqbreq2 10534 |
. . . . . . . . 9
⊢ ((𝐵 ∈ (N ×
N) ∧ ([Q]‘𝐵) ∈ (N ×
N)) → (𝐵
~Q ([Q]‘𝐵) ↔ ((1st ‘𝐵)
·N (2nd
‘([Q]‘𝐵))) = ((1st
‘([Q]‘𝐵)) ·N
(2nd ‘𝐵)))) |
51 | 49, 50 | mpdan 687 |
. . . . . . . 8
⊢ (𝐵 ∈ (N ×
N) → (𝐵
~Q ([Q]‘𝐵) ↔ ((1st ‘𝐵)
·N (2nd
‘([Q]‘𝐵))) = ((1st
‘([Q]‘𝐵)) ·N
(2nd ‘𝐵)))) |
52 | 48, 51 | mpbid 235 |
. . . . . . 7
⊢ (𝐵 ∈ (N ×
N) → ((1st ‘𝐵) ·N
(2nd ‘([Q]‘𝐵))) = ((1st
‘([Q]‘𝐵)) ·N
(2nd ‘𝐵))) |
53 | 47, 52 | oveqan12d 7232 |
. . . . . 6
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘𝐴))
·N ((1st ‘𝐵) ·N
(2nd ‘([Q]‘𝐵)))) = (((1st ‘𝐴)
·N (2nd
‘([Q]‘𝐴))) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘𝐵)))) |
54 | | mulcompi 10510 |
. . . . . . 7
⊢
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐵)
·N (2nd ‘𝐴))) = (((1st ‘𝐵)
·N (2nd ‘𝐴)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) |
55 | | fvex 6730 |
. . . . . . . 8
⊢
(1st ‘𝐵) ∈ V |
56 | | fvex 6730 |
. . . . . . . 8
⊢
(2nd ‘𝐴) ∈ V |
57 | | fvex 6730 |
. . . . . . . 8
⊢
(1st ‘([Q]‘𝐴)) ∈ V |
58 | | mulcompi 10510 |
. . . . . . . 8
⊢ (𝑥
·N 𝑦) = (𝑦 ·N 𝑥) |
59 | | mulasspi 10511 |
. . . . . . . 8
⊢ ((𝑥
·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦
·N 𝑧)) |
60 | | fvex 6730 |
. . . . . . . 8
⊢
(2nd ‘([Q]‘𝐵)) ∈ V |
61 | 55, 56, 57, 58, 59, 60 | caov411 7440 |
. . . . . . 7
⊢
(((1st ‘𝐵) ·N
(2nd ‘𝐴))
·N ((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) = (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘𝐴))
·N ((1st ‘𝐵) ·N
(2nd ‘([Q]‘𝐵)))) |
62 | 54, 61 | eqtri 2765 |
. . . . . 6
⊢
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐵)
·N (2nd ‘𝐴))) = (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘𝐴))
·N ((1st ‘𝐵) ·N
(2nd ‘([Q]‘𝐵)))) |
63 | | mulcompi 10510 |
. . . . . . 7
⊢
(((1st ‘𝐴) ·N
(2nd ‘𝐵))
·N ((1st
‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴)))) = (((1st
‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) |
64 | | fvex 6730 |
. . . . . . . 8
⊢
(1st ‘([Q]‘𝐵)) ∈ V |
65 | | fvex 6730 |
. . . . . . . 8
⊢
(2nd ‘([Q]‘𝐴)) ∈ V |
66 | | fvex 6730 |
. . . . . . . 8
⊢
(1st ‘𝐴) ∈ V |
67 | | fvex 6730 |
. . . . . . . 8
⊢
(2nd ‘𝐵) ∈ V |
68 | 64, 65, 66, 58, 59, 67 | caov411 7440 |
. . . . . . 7
⊢
(((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) = (((1st ‘𝐴)
·N (2nd
‘([Q]‘𝐴))) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘𝐵))) |
69 | 63, 68 | eqtri 2765 |
. . . . . 6
⊢
(((1st ‘𝐴) ·N
(2nd ‘𝐵))
·N ((1st
‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴)))) = (((1st ‘𝐴)
·N (2nd
‘([Q]‘𝐴))) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘𝐵))) |
70 | 53, 62, 69 | 3eqtr4g 2803 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐵)
·N (2nd ‘𝐴))) = (((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴))))) |
71 | 41, 70 | breq12d 5066 |
. . . 4
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → ((((1st
‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐴)
·N (2nd ‘𝐵))) <N
(((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵))) ·N
((1st ‘𝐵)
·N (2nd ‘𝐴))) ↔ (((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) <N
(((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴)))))) |
72 | 31, 39, 71 | 3bitrd 308 |
. . 3
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ (((1st
‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐴)) ·N
(2nd ‘([Q]‘𝐵)))) <N
(((1st ‘𝐴)
·N (2nd ‘𝐵)) ·N
((1st ‘([Q]‘𝐵)) ·N
(2nd ‘([Q]‘𝐴)))))) |
73 | 22, 26, 72 | 3bitr4rd 315 |
. 2
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 <pQ 𝐵 ↔
([Q]‘𝐴)
<Q ([Q]‘𝐵))) |
74 | 4, 16, 73 | pm5.21nii 383 |
1
⊢ (𝐴 <pQ
𝐵 ↔
([Q]‘𝐴)
<Q ([Q]‘𝐵)) |