MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lterpq Structured version   Visualization version   GIF version

Theorem lterpq 10657
Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
lterpq (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵))

Proof of Theorem lterpq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltpq 10597 . . . 4 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
2 opabssxp 5669 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))} ⊆ ((N × N) × (N × N))
31, 2eqsstri 3951 . . 3 <pQ ⊆ ((N × N) × (N × N))
43brel 5643 . 2 (𝐴 <pQ 𝐵 → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
5 ltrelnq 10613 . . . 4 <Q ⊆ (Q × Q)
65brel 5643 . . 3 (([Q]‘𝐴) <Q ([Q]‘𝐵) → (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q))
7 elpqn 10612 . . . 4 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
8 elpqn 10612 . . . 4 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
9 nqerf 10617 . . . . . . 7 [Q]:(N × N)⟶Q
109fdmi 6596 . . . . . 6 dom [Q] = (N × N)
11 0nelxp 5614 . . . . . 6 ¬ ∅ ∈ (N × N)
1210, 11ndmfvrcl 6787 . . . . 5 (([Q]‘𝐴) ∈ (N × N) → 𝐴 ∈ (N × N))
1310, 11ndmfvrcl 6787 . . . . 5 (([Q]‘𝐵) ∈ (N × N) → 𝐵 ∈ (N × N))
1412, 13anim12i 612 . . . 4 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
157, 8, 14syl2an 595 . . 3 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
166, 15syl 17 . 2 (([Q]‘𝐴) <Q ([Q]‘𝐵) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
17 xp1st 7836 . . . . 5 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
18 xp2nd 7837 . . . . 5 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
19 mulclpi 10580 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
2017, 18, 19syl2an 595 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
21 ltmpi 10591 . . . 4 (((1st𝐴) ·N (2nd𝐵)) ∈ N → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
2220, 21syl 17 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
23 nqercl 10618 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
24 nqercl 10618 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
25 ordpinq 10630 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) <Q ([Q]‘𝐵) ↔ ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
2623, 24, 25syl2an 595 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) <Q ([Q]‘𝐵) ↔ ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
27 1st2nd2 7843 . . . . . 6 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
28 1st2nd2 7843 . . . . . 6 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
2927, 28breqan12d 5086 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
30 ordpipq 10629 . . . . 5 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
3129, 30bitrdi 286 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
32 xp1st 7836 . . . . . . 7 (([Q]‘𝐴) ∈ (N × N) → (1st ‘([Q]‘𝐴)) ∈ N)
3323, 7, 323syl 18 . . . . . 6 (𝐴 ∈ (N × N) → (1st ‘([Q]‘𝐴)) ∈ N)
34 xp2nd 7837 . . . . . . 7 (([Q]‘𝐵) ∈ (N × N) → (2nd ‘([Q]‘𝐵)) ∈ N)
3524, 8, 343syl 18 . . . . . 6 (𝐵 ∈ (N × N) → (2nd ‘([Q]‘𝐵)) ∈ N)
36 mulclpi 10580 . . . . . 6 (((1st ‘([Q]‘𝐴)) ∈ N ∧ (2nd ‘([Q]‘𝐵)) ∈ N) → ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N)
3733, 35, 36syl2an 595 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N)
38 ltmpi 10591 . . . . 5 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴)))))
3937, 38syl 17 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴)))))
40 mulcompi 10583 . . . . . 6 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))))
4140a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))))
42 nqerrel 10619 . . . . . . . . 9 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
4323, 7syl 17 . . . . . . . . . 10 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
44 enqbreq2 10607 . . . . . . . . . 10 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴))))
4543, 44mpdan 683 . . . . . . . . 9 (𝐴 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴))))
4642, 45mpbid 231 . . . . . . . 8 (𝐴 ∈ (N × N) → ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)))
4746eqcomd 2744 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) = ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))))
48 nqerrel 10619 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
4924, 8syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
50 enqbreq2 10607 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
5149, 50mpdan 683 . . . . . . . 8 (𝐵 ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
5248, 51mpbid 231 . . . . . . 7 (𝐵 ∈ (N × N) → ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
5347, 52oveqan12d 7274 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵)))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
54 mulcompi 10583 . . . . . . 7 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))))
55 fvex 6769 . . . . . . . 8 (1st𝐵) ∈ V
56 fvex 6769 . . . . . . . 8 (2nd𝐴) ∈ V
57 fvex 6769 . . . . . . . 8 (1st ‘([Q]‘𝐴)) ∈ V
58 mulcompi 10583 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
59 mulasspi 10584 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
60 fvex 6769 . . . . . . . 8 (2nd ‘([Q]‘𝐵)) ∈ V
6155, 56, 57, 58, 59, 60caov411 7482 . . . . . . 7 (((1st𝐵) ·N (2nd𝐴)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) = (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))))
6254, 61eqtri 2766 . . . . . 6 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))))
63 mulcompi 10583 . . . . . . 7 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))) = (((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st𝐴) ·N (2nd𝐵)))
64 fvex 6769 . . . . . . . 8 (1st ‘([Q]‘𝐵)) ∈ V
65 fvex 6769 . . . . . . . 8 (2nd ‘([Q]‘𝐴)) ∈ V
66 fvex 6769 . . . . . . . 8 (1st𝐴) ∈ V
67 fvex 6769 . . . . . . . 8 (2nd𝐵) ∈ V
6864, 65, 66, 58, 59, 67caov411 7482 . . . . . . 7 (((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
6963, 68eqtri 2766 . . . . . 6 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
7053, 62, 693eqtr4g 2804 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
7141, 70breq12d 5083 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
7231, 39, 713bitrd 304 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
7322, 26, 723bitr4rd 311 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵)))
744, 16, 73pm5.21nii 379 1 (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  {copab 5132   × cxp 5578  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Ncnpi 10531   ·N cmi 10533   <N clti 10534   <pQ cltpq 10537   ~Q ceq 10538  Qcnq 10539  [Q]cerq 10541   <Q cltq 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-1nq 10603  df-ltnq 10605
This theorem is referenced by:  ltanq  10658  ltmnq  10659  1lt2nq  10660
  Copyright terms: Public domain W3C validator