MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lterpq Structured version   Visualization version   GIF version

Theorem lterpq 10384
Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
lterpq (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵))

Proof of Theorem lterpq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltpq 10324 . . . 4 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
2 opabssxp 5641 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))} ⊆ ((N × N) × (N × N))
31, 2eqsstri 4004 . . 3 <pQ ⊆ ((N × N) × (N × N))
43brel 5615 . 2 (𝐴 <pQ 𝐵 → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
5 ltrelnq 10340 . . . 4 <Q ⊆ (Q × Q)
65brel 5615 . . 3 (([Q]‘𝐴) <Q ([Q]‘𝐵) → (([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q))
7 elpqn 10339 . . . 4 (([Q]‘𝐴) ∈ Q → ([Q]‘𝐴) ∈ (N × N))
8 elpqn 10339 . . . 4 (([Q]‘𝐵) ∈ Q → ([Q]‘𝐵) ∈ (N × N))
9 nqerf 10344 . . . . . . 7 [Q]:(N × N)⟶Q
109fdmi 6520 . . . . . 6 dom [Q] = (N × N)
11 0nelxp 5587 . . . . . 6 ¬ ∅ ∈ (N × N)
1210, 11ndmfvrcl 6697 . . . . 5 (([Q]‘𝐴) ∈ (N × N) → 𝐴 ∈ (N × N))
1310, 11ndmfvrcl 6697 . . . . 5 (([Q]‘𝐵) ∈ (N × N) → 𝐵 ∈ (N × N))
1412, 13anim12i 612 . . . 4 ((([Q]‘𝐴) ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
157, 8, 14syl2an 595 . . 3 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
166, 15syl 17 . 2 (([Q]‘𝐴) <Q ([Q]‘𝐵) → (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)))
17 xp1st 7715 . . . . 5 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
18 xp2nd 7716 . . . . 5 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
19 mulclpi 10307 . . . . 5 (((1st𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
2017, 18, 19syl2an 595 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st𝐴) ·N (2nd𝐵)) ∈ N)
21 ltmpi 10318 . . . 4 (((1st𝐴) ·N (2nd𝐵)) ∈ N → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
2220, 21syl 17 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
23 nqercl 10345 . . . 4 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q)
24 nqercl 10345 . . . 4 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ Q)
25 ordpinq 10357 . . . 4 ((([Q]‘𝐴) ∈ Q ∧ ([Q]‘𝐵) ∈ Q) → (([Q]‘𝐴) <Q ([Q]‘𝐵) ↔ ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
2623, 24, 25syl2an 595 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (([Q]‘𝐴) <Q ([Q]‘𝐵) ↔ ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) <N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
27 1st2nd2 7722 . . . . . 6 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
28 1st2nd2 7722 . . . . . 6 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
2927, 28breqan12d 5078 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩))
30 ordpipq 10356 . . . . 5 (⟨(1st𝐴), (2nd𝐴)⟩ <pQ ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)))
3129, 30syl6bb 288 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
32 xp1st 7715 . . . . . . 7 (([Q]‘𝐴) ∈ (N × N) → (1st ‘([Q]‘𝐴)) ∈ N)
3323, 7, 323syl 18 . . . . . 6 (𝐴 ∈ (N × N) → (1st ‘([Q]‘𝐴)) ∈ N)
34 xp2nd 7716 . . . . . . 7 (([Q]‘𝐵) ∈ (N × N) → (2nd ‘([Q]‘𝐵)) ∈ N)
3524, 8, 343syl 18 . . . . . 6 (𝐵 ∈ (N × N) → (2nd ‘([Q]‘𝐵)) ∈ N)
36 mulclpi 10307 . . . . . 6 (((1st ‘([Q]‘𝐴)) ∈ N ∧ (2nd ‘([Q]‘𝐵)) ∈ N) → ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N)
3733, 35, 36syl2an 595 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N)
38 ltmpi 10318 . . . . 5 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴)))))
3937, 38syl 17 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴)))))
40 mulcompi 10310 . . . . . 6 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))))
4140a1i 11 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))))
42 nqerrel 10346 . . . . . . . . 9 (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴))
4323, 7syl 17 . . . . . . . . . 10 (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ (N × N))
44 enqbreq2 10334 . . . . . . . . . 10 ((𝐴 ∈ (N × N) ∧ ([Q]‘𝐴) ∈ (N × N)) → (𝐴 ~Q ([Q]‘𝐴) ↔ ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴))))
4543, 44mpdan 683 . . . . . . . . 9 (𝐴 ∈ (N × N) → (𝐴 ~Q ([Q]‘𝐴) ↔ ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴))))
4642, 45mpbid 233 . . . . . . . 8 (𝐴 ∈ (N × N) → ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) = ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)))
4746eqcomd 2831 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) = ((1st𝐴) ·N (2nd ‘([Q]‘𝐴))))
48 nqerrel 10346 . . . . . . . 8 (𝐵 ∈ (N × N) → 𝐵 ~Q ([Q]‘𝐵))
4924, 8syl 17 . . . . . . . . 9 (𝐵 ∈ (N × N) → ([Q]‘𝐵) ∈ (N × N))
50 enqbreq2 10334 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ ([Q]‘𝐵) ∈ (N × N)) → (𝐵 ~Q ([Q]‘𝐵) ↔ ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
5149, 50mpdan 683 . . . . . . . 8 (𝐵 ∈ (N × N) → (𝐵 ~Q ([Q]‘𝐵) ↔ ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
5248, 51mpbid 233 . . . . . . 7 (𝐵 ∈ (N × N) → ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))) = ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
5347, 52oveqan12d 7170 . . . . . 6 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵)))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵))))
54 mulcompi 10310 . . . . . . 7 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐵) ·N (2nd𝐴)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))))
55 fvex 6679 . . . . . . . 8 (1st𝐵) ∈ V
56 fvex 6679 . . . . . . . 8 (2nd𝐴) ∈ V
57 fvex 6679 . . . . . . . 8 (1st ‘([Q]‘𝐴)) ∈ V
58 mulcompi 10310 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
59 mulasspi 10311 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
60 fvex 6679 . . . . . . . 8 (2nd ‘([Q]‘𝐵)) ∈ V
6155, 56, 57, 58, 59, 60caov411 7373 . . . . . . 7 (((1st𝐵) ·N (2nd𝐴)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) = (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))))
6254, 61eqtri 2848 . . . . . 6 (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st ‘([Q]‘𝐴)) ·N (2nd𝐴)) ·N ((1st𝐵) ·N (2nd ‘([Q]‘𝐵))))
63 mulcompi 10310 . . . . . . 7 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))) = (((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st𝐴) ·N (2nd𝐵)))
64 fvex 6679 . . . . . . . 8 (1st ‘([Q]‘𝐵)) ∈ V
65 fvex 6679 . . . . . . . 8 (2nd ‘([Q]‘𝐴)) ∈ V
66 fvex 6679 . . . . . . . 8 (1st𝐴) ∈ V
67 fvex 6679 . . . . . . . 8 (2nd𝐵) ∈ V
6864, 65, 66, 58, 59, 67caov411 7373 . . . . . . 7 (((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
6963, 68eqtri 2848 . . . . . 6 (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))) = (((1st𝐴) ·N (2nd ‘([Q]‘𝐴))) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd𝐵)))
7053, 62, 693eqtr4g 2885 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴)))))
7141, 70breq12d 5075 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ((((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵))) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
7231, 39, 713bitrd 306 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐴)) ·N (2nd ‘([Q]‘𝐵)))) <N (((1st𝐴) ·N (2nd𝐵)) ·N ((1st ‘([Q]‘𝐵)) ·N (2nd ‘([Q]‘𝐴))))))
7322, 26, 723bitr4rd 313 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵)))
744, 16, 73pm5.21nii 380 1 (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1530  wcel 2107  cop 4569   class class class wbr 5062  {copab 5124   × cxp 5551  cfv 6351  (class class class)co 7151  1st c1st 7681  2nd c2nd 7682  Ncnpi 10258   ·N cmi 10260   <N clti 10261   <pQ cltpq 10264   ~Q ceq 10265  Qcnq 10266  [Q]cerq 10268   <Q cltq 10272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8282  df-ni 10286  df-mi 10288  df-lti 10289  df-ltpq 10324  df-enq 10325  df-nq 10326  df-erq 10327  df-1nq 10330  df-ltnq 10332
This theorem is referenced by:  ltanq  10385  ltmnq  10386  1lt2nq  10387
  Copyright terms: Public domain W3C validator