MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expcllem Structured version   Visualization version   GIF version

Theorem expcllem 13978
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
Assertion
Ref Expression
expcllem ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcllem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12415 . 2 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
2 oveq2 7365 . . . . . . 7 (𝑧 = 1 → (𝐴𝑧) = (𝐴↑1))
32eleq1d 2822 . . . . . 6 (𝑧 = 1 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹))
43imbi2d 340 . . . . 5 (𝑧 = 1 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)))
5 oveq2 7365 . . . . . . 7 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
65eleq1d 2822 . . . . . 6 (𝑧 = 𝑤 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝑤) ∈ 𝐹))
76imbi2d 340 . . . . 5 (𝑧 = 𝑤 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝑤) ∈ 𝐹)))
8 oveq2 7365 . . . . . . 7 (𝑧 = (𝑤 + 1) → (𝐴𝑧) = (𝐴↑(𝑤 + 1)))
98eleq1d 2822 . . . . . 6 (𝑧 = (𝑤 + 1) → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹))
109imbi2d 340 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
11 oveq2 7365 . . . . . . 7 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1211eleq1d 2822 . . . . . 6 (𝑧 = 𝐵 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝐵) ∈ 𝐹))
1312imbi2d 340 . . . . 5 (𝑧 = 𝐵 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹)))
14 expcllem.1 . . . . . . . . 9 𝐹 ⊆ ℂ
1514sseli 3940 . . . . . . . 8 (𝐴𝐹𝐴 ∈ ℂ)
16 exp1 13973 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1715, 16syl 17 . . . . . . 7 (𝐴𝐹 → (𝐴↑1) = 𝐴)
1817eleq1d 2822 . . . . . 6 (𝐴𝐹 → ((𝐴↑1) ∈ 𝐹𝐴𝐹))
1918ibir 267 . . . . 5 (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)
20 expcllem.2 . . . . . . . . . . . 12 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
2120caovcl 7548 . . . . . . . . . . 11 (((𝐴𝑤) ∈ 𝐹𝐴𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2221ancoms 459 . . . . . . . . . 10 ((𝐴𝐹 ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2322adantlr 713 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
24 nnnn0 12420 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0)
25 expp1 13974 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2615, 24, 25syl2an 596 . . . . . . . . . . 11 ((𝐴𝐹𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2726eleq1d 2822 . . . . . . . . . 10 ((𝐴𝐹𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2827adantr 481 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2923, 28mpbird 256 . . . . . . . 8 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹)
3029exp31 420 . . . . . . 7 (𝐴𝐹 → (𝑤 ∈ ℕ → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3130com12 32 . . . . . 6 (𝑤 ∈ ℕ → (𝐴𝐹 → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3231a2d 29 . . . . 5 (𝑤 ∈ ℕ → ((𝐴𝐹 → (𝐴𝑤) ∈ 𝐹) → (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
334, 7, 10, 13, 19, 32nnind 12171 . . . 4 (𝐵 ∈ ℕ → (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹))
3433impcom 408 . . 3 ((𝐴𝐹𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹)
35 oveq2 7365 . . . . 5 (𝐵 = 0 → (𝐴𝐵) = (𝐴↑0))
36 exp0 13971 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3715, 36syl 17 . . . . 5 (𝐴𝐹 → (𝐴↑0) = 1)
3835, 37sylan9eqr 2798 . . . 4 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) = 1)
39 expcllem.3 . . . 4 1 ∈ 𝐹
4038, 39eqeltrdi 2846 . . 3 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) ∈ 𝐹)
4134, 40jaodan 956 . 2 ((𝐴𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴𝐵) ∈ 𝐹)
421, 41sylan2b 594 1 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wss 3910  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cn 12153  0cn0 12413  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  expcl2lem  13979  nnexpcl  13980  nn0expcl  13981  zexpcl  13982  qexpcl  13983  reexpcl  13984  expcl  13985  expge0  14004  expge1  14005  lgsfcl2  26651
  Copyright terms: Public domain W3C validator