Step | Hyp | Ref
| Expression |
1 | | elnn0 12235 |
. 2
⊢ (𝐵 ∈ ℕ0
↔ (𝐵 ∈ ℕ
∨ 𝐵 =
0)) |
2 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑧 = 1 → (𝐴↑𝑧) = (𝐴↑1)) |
3 | 2 | eleq1d 2823 |
. . . . . 6
⊢ (𝑧 = 1 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹)) |
4 | 3 | imbi2d 341 |
. . . . 5
⊢ (𝑧 = 1 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹))) |
5 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (𝐴↑𝑧) = (𝐴↑𝑤)) |
6 | 5 | eleq1d 2823 |
. . . . . 6
⊢ (𝑧 = 𝑤 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝑤) ∈ 𝐹)) |
7 | 6 | imbi2d 341 |
. . . . 5
⊢ (𝑧 = 𝑤 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹))) |
8 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑧 = (𝑤 + 1) → (𝐴↑𝑧) = (𝐴↑(𝑤 + 1))) |
9 | 8 | eleq1d 2823 |
. . . . . 6
⊢ (𝑧 = (𝑤 + 1) → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹)) |
10 | 9 | imbi2d 341 |
. . . . 5
⊢ (𝑧 = (𝑤 + 1) → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
11 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝐴↑𝑧) = (𝐴↑𝐵)) |
12 | 11 | eleq1d 2823 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝐵) ∈ 𝐹)) |
13 | 12 | imbi2d 341 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹))) |
14 | | expcllem.1 |
. . . . . . . . 9
⊢ 𝐹 ⊆
ℂ |
15 | 14 | sseli 3917 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ) |
16 | | exp1 13788 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) = 𝐴) |
18 | 17 | eleq1d 2823 |
. . . . . 6
⊢ (𝐴 ∈ 𝐹 → ((𝐴↑1) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹)) |
19 | 18 | ibir 267 |
. . . . 5
⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹) |
20 | | expcllem.2 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
21 | 20 | caovcl 7466 |
. . . . . . . . . . 11
⊢ (((𝐴↑𝑤) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
22 | 21 | ancoms 459 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
23 | 22 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
24 | | nnnn0 12240 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℕ → 𝑤 ∈
ℕ0) |
25 | | expp1 13789 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0)
→ (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) |
26 | 15, 24, 25 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) |
27 | 26 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
28 | 27 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
29 | 23, 28 | mpbird 256 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹) |
30 | 29 | exp31 420 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐹 → (𝑤 ∈ ℕ → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
31 | 30 | com12 32 |
. . . . . 6
⊢ (𝑤 ∈ ℕ → (𝐴 ∈ 𝐹 → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
32 | 31 | a2d 29 |
. . . . 5
⊢ (𝑤 ∈ ℕ → ((𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
33 | 4, 7, 10, 13, 19, 32 | nnind 11991 |
. . . 4
⊢ (𝐵 ∈ ℕ → (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹)) |
34 | 33 | impcom 408 |
. . 3
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ) → (𝐴↑𝐵) ∈ 𝐹) |
35 | | oveq2 7283 |
. . . . 5
⊢ (𝐵 = 0 → (𝐴↑𝐵) = (𝐴↑0)) |
36 | | exp0 13786 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
37 | 15, 36 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ 𝐹 → (𝐴↑0) = 1) |
38 | 35, 37 | sylan9eqr 2800 |
. . . 4
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) = 1) |
39 | | expcllem.3 |
. . . 4
⊢ 1 ∈
𝐹 |
40 | 38, 39 | eqeltrdi 2847 |
. . 3
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) ∈ 𝐹) |
41 | 34, 40 | jaodan 955 |
. 2
⊢ ((𝐴 ∈ 𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴↑𝐵) ∈ 𝐹) |
42 | 1, 41 | sylan2b 594 |
1
⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |