Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > genpcl | Structured version Visualization version GIF version |
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
genpcl.3 | ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) |
genpcl.4 | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
genpcl.5 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) |
Ref | Expression |
---|---|
genpcl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . 3 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpn0 10759 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
4 | 1, 2 | genpss 10760 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
5 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
7 | genpcl.3 | . . . . 5 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) | |
8 | 5, 6, 7 | caovord 7483 | . . . 4 ⊢ (𝑧 ∈ Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
9 | genpcl.4 | . . . 4 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
10 | 1, 2, 8, 9 | genpnnp 10761 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ¬ (𝐴𝐹𝐵) = Q) |
11 | dfpss2 4020 | . . 3 ⊢ ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q)) | |
12 | 4, 10, 11 | sylanbrc 583 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊊ Q) |
13 | genpcl.5 | . . . . . 6 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) | |
14 | 1, 2, 13 | genpcd 10762 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
15 | 14 | alrimdv 1932 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
16 | vex 3436 | . . . . . 6 ⊢ 𝑧 ∈ V | |
17 | vex 3436 | . . . . . 6 ⊢ 𝑤 ∈ V | |
18 | 16, 17, 7 | caovord 7483 | . . . . 5 ⊢ (𝑣 ∈ Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤))) |
19 | 16, 17, 9 | caovcom 7469 | . . . . 5 ⊢ (𝑧𝐺𝑤) = (𝑤𝐺𝑧) |
20 | 1, 2, 18, 19 | genpnmax 10763 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) |
21 | 15, 20 | jcad 513 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) |
22 | 21 | ralrimiv 3102 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) |
23 | elnp 10743 | . 2 ⊢ ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) | |
24 | 3, 12, 22, 23 | syl21anbrc 1343 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ⊊ wpss 3888 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 ∈ cmpo 7277 Qcnq 10608 <Q cltq 10614 Pcnp 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-omul 8302 df-er 8498 df-ni 10628 df-mi 10630 df-lti 10631 df-ltpq 10666 df-enq 10667 df-nq 10668 df-ltnq 10674 df-np 10737 |
This theorem is referenced by: addclpr 10774 mulclpr 10776 |
Copyright terms: Public domain | W3C validator |