| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpcl | Structured version Visualization version GIF version | ||
| Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| genpcl.3 | ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) |
| genpcl.4 | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
| genpcl.5 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) |
| Ref | Expression |
|---|---|
| genpcl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 2 | genp.2 | . . 3 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 3 | 1, 2 | genpn0 10901 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
| 4 | 1, 2 | genpss 10902 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
| 5 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 7 | genpcl.3 | . . . . 5 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) | |
| 8 | 5, 6, 7 | caovord 7563 | . . . 4 ⊢ (𝑧 ∈ Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
| 9 | genpcl.4 | . . . 4 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
| 10 | 1, 2, 8, 9 | genpnnp 10903 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ¬ (𝐴𝐹𝐵) = Q) |
| 11 | dfpss2 4037 | . . 3 ⊢ ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q)) | |
| 12 | 4, 10, 11 | sylanbrc 583 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊊ Q) |
| 13 | genpcl.5 | . . . . . 6 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) | |
| 14 | 1, 2, 13 | genpcd 10904 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| 15 | 14 | alrimdv 1930 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
| 16 | vex 3441 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 17 | vex 3441 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 18 | 16, 17, 7 | caovord 7563 | . . . . 5 ⊢ (𝑣 ∈ Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤))) |
| 19 | 16, 17, 9 | caovcom 7549 | . . . . 5 ⊢ (𝑧𝐺𝑤) = (𝑤𝐺𝑧) |
| 20 | 1, 2, 18, 19 | genpnmax 10905 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) |
| 21 | 15, 20 | jcad 512 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) |
| 22 | 21 | ralrimiv 3124 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) |
| 23 | elnp 10885 | . 2 ⊢ ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) | |
| 24 | 3, 12, 22, 23 | syl21anbrc 1345 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ⊊ wpss 3899 ∅c0 4282 class class class wbr 5093 (class class class)co 7352 ∈ cmpo 7354 Qcnq 10750 <Q cltq 10756 Pcnp 10757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-oadd 8395 df-omul 8396 df-er 8628 df-ni 10770 df-mi 10772 df-lti 10773 df-ltpq 10808 df-enq 10809 df-nq 10810 df-ltnq 10816 df-np 10879 |
| This theorem is referenced by: addclpr 10916 mulclpr 10918 |
| Copyright terms: Public domain | W3C validator |