MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcl Structured version   Visualization version   GIF version

Theorem genpcl 10220
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcl.3 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
genpcl.4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
genpcl.5 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcl ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺   𝑦,𝑤,𝑣,𝐺,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝑤,𝐴,𝑣   𝑤,𝐵,𝑣   𝑥,𝐹,𝑦,𝑤,𝑣,
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem genpcl
StepHypRef Expression
1 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpn0 10215 . 2 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
41, 2genpss 10216 . . 3 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
5 vex 3412 . . . . 5 𝑥 ∈ V
6 vex 3412 . . . . 5 𝑦 ∈ V
7 genpcl.3 . . . . 5 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
85, 6, 7caovord 7169 . . . 4 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
9 genpcl.4 . . . 4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
101, 2, 8, 9genpnnp 10217 . . 3 ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)
11 dfpss2 3948 . . 3 ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q))
124, 10, 11sylanbrc 575 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊊ Q)
13 genpcl.5 . . . . . 6 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
141, 2, 13genpcd 10218 . . . . 5 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1514alrimdv 1888 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
16 vex 3412 . . . . . 6 𝑧 ∈ V
17 vex 3412 . . . . . 6 𝑤 ∈ V
1816, 17, 7caovord 7169 . . . . 5 (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))
1916, 17, 9caovcom 7155 . . . . 5 (𝑧𝐺𝑤) = (𝑤𝐺𝑧)
201, 2, 18, 19genpnmax 10219 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
2115, 20jcad 505 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
2221ralrimiv 3125 . 2 ((𝐴P𝐵P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
23 elnp 10199 . 2 ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
243, 12, 22, 23syl21anbrc 1324 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1505   = wceq 1507  wcel 2048  {cab 2753  wral 3082  wrex 3083  wss 3825  wpss 3826  c0 4173   class class class wbr 4923  (class class class)co 6970  cmpo 6972  Qcnq 10064   <Q cltq 10070  Pcnp 10071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-oadd 7901  df-omul 7902  df-er 8081  df-ni 10084  df-mi 10086  df-lti 10087  df-ltpq 10122  df-enq 10123  df-nq 10124  df-ltnq 10130  df-np 10193
This theorem is referenced by:  addclpr  10230  mulclpr  10232
  Copyright terms: Public domain W3C validator