MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcl Structured version   Visualization version   GIF version

Theorem genpcl 11002
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcl.3 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
genpcl.4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
genpcl.5 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcl ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺   𝑦,𝑤,𝑣,𝐺,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝑤,𝐴,𝑣   𝑤,𝐵,𝑣   𝑥,𝐹,𝑦,𝑤,𝑣,
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem genpcl
StepHypRef Expression
1 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpn0 10997 . 2 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
41, 2genpss 10998 . . 3 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
5 vex 3472 . . . . 5 𝑥 ∈ V
6 vex 3472 . . . . 5 𝑦 ∈ V
7 genpcl.3 . . . . 5 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
85, 6, 7caovord 7614 . . . 4 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
9 genpcl.4 . . . 4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
101, 2, 8, 9genpnnp 10999 . . 3 ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)
11 dfpss2 4080 . . 3 ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q))
124, 10, 11sylanbrc 582 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊊ Q)
13 genpcl.5 . . . . . 6 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
141, 2, 13genpcd 11000 . . . . 5 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1514alrimdv 1924 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
16 vex 3472 . . . . . 6 𝑧 ∈ V
17 vex 3472 . . . . . 6 𝑤 ∈ V
1816, 17, 7caovord 7614 . . . . 5 (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))
1916, 17, 9caovcom 7600 . . . . 5 (𝑧𝐺𝑤) = (𝑤𝐺𝑧)
201, 2, 18, 19genpnmax 11001 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
2115, 20jcad 512 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
2221ralrimiv 3139 . 2 ((𝐴P𝐵P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
23 elnp 10981 . 2 ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
243, 12, 22, 23syl21anbrc 1341 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  {cab 2703  wral 3055  wrex 3064  wss 3943  wpss 3944  c0 4317   class class class wbr 5141  (class class class)co 7404  cmpo 7406  Qcnq 10846   <Q cltq 10852  Pcnp 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-oadd 8468  df-omul 8469  df-er 8702  df-ni 10866  df-mi 10868  df-lti 10869  df-ltpq 10904  df-enq 10905  df-nq 10906  df-ltnq 10912  df-np 10975
This theorem is referenced by:  addclpr  11012  mulclpr  11014
  Copyright terms: Public domain W3C validator