MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcl Structured version   Visualization version   GIF version

Theorem genpcl 10695
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcl.3 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
genpcl.4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
genpcl.5 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcl ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺   𝑦,𝑤,𝑣,𝐺,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝑤,𝐴,𝑣   𝑤,𝐵,𝑣   𝑥,𝐹,𝑦,𝑤,𝑣,
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem genpcl
StepHypRef Expression
1 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpn0 10690 . 2 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
41, 2genpss 10691 . . 3 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
5 vex 3426 . . . . 5 𝑥 ∈ V
6 vex 3426 . . . . 5 𝑦 ∈ V
7 genpcl.3 . . . . 5 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
85, 6, 7caovord 7461 . . . 4 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
9 genpcl.4 . . . 4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
101, 2, 8, 9genpnnp 10692 . . 3 ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)
11 dfpss2 4016 . . 3 ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q))
124, 10, 11sylanbrc 582 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊊ Q)
13 genpcl.5 . . . . . 6 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
141, 2, 13genpcd 10693 . . . . 5 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1514alrimdv 1933 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
16 vex 3426 . . . . . 6 𝑧 ∈ V
17 vex 3426 . . . . . 6 𝑤 ∈ V
1816, 17, 7caovord 7461 . . . . 5 (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))
1916, 17, 9caovcom 7447 . . . . 5 (𝑧𝐺𝑤) = (𝑤𝐺𝑧)
201, 2, 18, 19genpnmax 10694 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
2115, 20jcad 512 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
2221ralrimiv 3106 . 2 ((𝐴P𝐵P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
23 elnp 10674 . 2 ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
243, 12, 22, 23syl21anbrc 1342 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  wss 3883  wpss 3884  c0 4253   class class class wbr 5070  (class class class)co 7255  cmpo 7257  Qcnq 10539   <Q cltq 10545  Pcnp 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-mi 10561  df-lti 10562  df-ltpq 10597  df-enq 10598  df-nq 10599  df-ltnq 10605  df-np 10668
This theorem is referenced by:  addclpr  10705  mulclpr  10707
  Copyright terms: Public domain W3C validator