MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcl Structured version   Visualization version   GIF version

Theorem genpcl 10906
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpcl.3 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
genpcl.4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
genpcl.5 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
Assertion
Ref Expression
genpcl ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺   𝑦,𝑤,𝑣,𝐺,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝑤,𝐴,𝑣   𝑤,𝐵,𝑣   𝑥,𝐹,𝑦,𝑤,𝑣,
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem genpcl
StepHypRef Expression
1 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpn0 10901 . 2 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
41, 2genpss 10902 . . 3 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊆ Q)
5 vex 3441 . . . . 5 𝑥 ∈ V
6 vex 3441 . . . . 5 𝑦 ∈ V
7 genpcl.3 . . . . 5 (Q → (𝑓 <Q 𝑔 ↔ (𝐺𝑓) <Q (𝐺𝑔)))
85, 6, 7caovord 7563 . . . 4 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
9 genpcl.4 . . . 4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
101, 2, 8, 9genpnnp 10903 . . 3 ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)
11 dfpss2 4037 . . 3 ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q))
124, 10, 11sylanbrc 583 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ⊊ Q)
13 genpcl.5 . . . . . 6 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (𝐴𝐹𝐵)))
141, 2, 13genpcd 10904 . . . . 5 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
1514alrimdv 1930 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵))))
16 vex 3441 . . . . . 6 𝑧 ∈ V
17 vex 3441 . . . . . 6 𝑤 ∈ V
1816, 17, 7caovord 7563 . . . . 5 (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))
1916, 17, 9caovcom 7549 . . . . 5 (𝑧𝐺𝑤) = (𝑤𝐺𝑧)
201, 2, 18, 19genpnmax 10905 . . . 4 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
2115, 20jcad 512 . . 3 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
2221ralrimiv 3124 . 2 ((𝐴P𝐵P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
23 elnp 10885 . 2 ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
243, 12, 22, 23syl21anbrc 1345 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  wss 3898  wpss 3899  c0 4282   class class class wbr 5093  (class class class)co 7352  cmpo 7354  Qcnq 10750   <Q cltq 10756  Pcnp 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395  df-omul 8396  df-er 8628  df-ni 10770  df-mi 10772  df-lti 10773  df-ltpq 10808  df-enq 10809  df-nq 10810  df-ltnq 10816  df-np 10879
This theorem is referenced by:  addclpr  10916  mulclpr  10918
  Copyright terms: Public domain W3C validator