MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdilem Structured version   Visualization version   GIF version

Theorem ringdilem 20276
Description: Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringdilem.b 𝐵 = (Base‘𝑅)
ringdilem.p + = (+g𝑅)
ringdilem.t · = (.r𝑅)
Assertion
Ref Expression
ringdilem ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))

Proof of Theorem ringdilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringdilem.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
2 eqid 2740 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 ringdilem.p . . . . . . . . . 10 + = (+g𝑅)
4 ringdilem.t . . . . . . . . . 10 · = (.r𝑅)
51, 2, 3, 4isring 20264 . . . . . . . . 9 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
65simp3bi 1147 . . . . . . . 8 (𝑅 ∈ Ring → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
76adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
8 simpr1 1194 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
9 rsp 3253 . . . . . . 7 (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑥𝐵 → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
107, 8, 9sylc 65 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
11 simpr2 1195 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
12 rsp 3253 . . . . . 6 (∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑦𝐵 → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1310, 11, 12sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
14 simpr3 1196 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
15 rsp 3253 . . . . 5 (∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) → (𝑧𝐵 → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
1613, 14, 15sylc 65 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
1716simpld 494 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
1817caovdig 7664 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
1916simprd 495 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2019caovdirg 7667 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
2118, 20jca 511 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Mndcmnd 18772  Grpcgrp 18973  mulGrpcmgp 20161  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-ring 20262
This theorem is referenced by:  ringdi  20287  ringdir  20288
  Copyright terms: Public domain W3C validator