![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > catprsc2 | Structured version Visualization version GIF version |
Description: An alternate construction of the preorder induced by a category. See catprs2 47720 for details. See also catprsc 47721 for a different construction. The two constructions are different because df-cat 17617 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.) |
Ref | Expression |
---|---|
catprsc2.1 | ⊢ (𝜑 → ≤ = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}) |
Ref | Expression |
---|---|
catprsc2 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catprsc2.1 | . . . . 5 ⊢ (𝜑 → ≤ = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}) | |
2 | 1 | breqd 5159 | . . . 4 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤)) |
3 | vex 3477 | . . . . 5 ⊢ 𝑧 ∈ V | |
4 | vex 3477 | . . . . 5 ⊢ 𝑤 ∈ V | |
5 | oveq12 7421 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤)) | |
6 | 5 | neeq1d 2999 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅)) |
7 | eqid 2731 | . . . . 5 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅} | |
8 | 3, 4, 6, 7 | braba 5537 | . . . 4 ⊢ (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) |
9 | 2, 8 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
11 | 10 | ralrimivva 3199 | 1 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∅c0 4322 class class class wbr 5148 {copab 5210 (class class class)co 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-iota 6495 df-fv 6551 df-ov 7415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |