Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc2 Structured version   Visualization version   GIF version

Theorem catprsc2 46183
Description: An alternate construction of the preorder induced by a category. See catprs2 46181 for details. See also catprsc 46182 for a different construction. The two constructions are different because df-cat 17294 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypothesis
Ref Expression
catprsc2.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
Assertion
Ref Expression
catprsc2 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc2
StepHypRef Expression
1 catprsc2.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
21breqd 5081 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤))
3 vex 3426 . . . . 5 𝑧 ∈ V
4 vex 3426 . . . . 5 𝑤 ∈ V
5 oveq12 7264 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
65neeq1d 3002 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
7 eqid 2738 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}
83, 4, 6, 7braba 5443 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)
92, 8bitrdi 286 . . 3 (𝜑 → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
109adantr 480 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1110ralrimivva 3114 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  c0 4253   class class class wbr 5070  {copab 5132  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator