Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc2 Structured version   Visualization version   GIF version

Theorem catprsc2 45911
Description: An alternate construction of the preorder induced by a category. See catprs2 45909 for details. See also catprsc 45910 for a different construction. The two constructions are different because df-cat 17125 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypothesis
Ref Expression
catprsc2.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
Assertion
Ref Expression
catprsc2 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc2
StepHypRef Expression
1 catprsc2.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
21breqd 5050 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤))
3 vex 3402 . . . . 5 𝑧 ∈ V
4 vex 3402 . . . . 5 𝑤 ∈ V
5 oveq12 7200 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
65neeq1d 2991 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
7 eqid 2736 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}
83, 4, 6, 7braba 5403 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)
92, 8bitrdi 290 . . 3 (𝜑 → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
109adantr 484 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1110ralrimivva 3102 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  c0 4223   class class class wbr 5039  {copab 5101  (class class class)co 7191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-iota 6316  df-fv 6366  df-ov 7194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator