Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc2 Structured version   Visualization version   GIF version

Theorem catprsc2 48976
Description: An alternate construction of the preorder induced by a category. See catprs2 48974 for details. See also catprsc 48975 for a different construction. The two constructions are different because df-cat 17605 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypothesis
Ref Expression
catprsc2.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
Assertion
Ref Expression
catprsc2 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc2
StepHypRef Expression
1 catprsc2.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
21breqd 5113 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤))
3 vex 3448 . . . . 5 𝑧 ∈ V
4 vex 3448 . . . . 5 𝑤 ∈ V
5 oveq12 7378 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
65neeq1d 2984 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
7 eqid 2729 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}
83, 4, 6, 7braba 5492 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)
92, 8bitrdi 287 . . 3 (𝜑 → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
109adantr 480 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1110ralrimivva 3178 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4292   class class class wbr 5102  {copab 5164  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator