| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > catprsc2 | Structured version Visualization version GIF version | ||
| Description: An alternate construction of the preorder induced by a category. See catprs2 48929 for details. See also catprsc 48930 for a different construction. The two constructions are different because df-cat 17635 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| catprsc2.1 | ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}) |
| Ref | Expression |
|---|---|
| catprsc2 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprsc2.1 | . . . . 5 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}) | |
| 2 | 1 | breqd 5126 | . . . 4 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤)) |
| 3 | vex 3459 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 4 | vex 3459 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 5 | oveq12 7403 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤)) | |
| 6 | 5 | neeq1d 2986 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| 7 | eqid 2730 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅} = {〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅} | |
| 8 | 3, 4, 6, 7 | braba 5505 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅) |
| 9 | 2, 8 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| 11 | 10 | ralrimivva 3182 | 1 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ∅c0 4304 class class class wbr 5115 {copab 5177 (class class class)co 7394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-iota 6472 df-fv 6527 df-ov 7397 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |