Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc2 Structured version   Visualization version   GIF version

Theorem catprsc2 49054
Description: An alternate construction of the preorder induced by a category. See catprs2 49052 for details. See also catprsc 49053 for a different construction. The two constructions are different because df-cat 17574 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypothesis
Ref Expression
catprsc2.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
Assertion
Ref Expression
catprsc2 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc2
StepHypRef Expression
1 catprsc2.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})
21breqd 5100 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤))
3 vex 3440 . . . . 5 𝑧 ∈ V
4 vex 3440 . . . . 5 𝑤 ∈ V
5 oveq12 7355 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
65neeq1d 2987 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
7 eqid 2731 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}
83, 4, 6, 7braba 5475 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅}𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)
92, 8bitrdi 287 . . 3 (𝜑 → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
109adantr 480 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1110ralrimivva 3175 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  c0 4280   class class class wbr 5089  {copab 5151  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator