Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  endmndlem Structured version   Visualization version   GIF version

Theorem endmndlem 48957
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 49422 for converting a monoid to a category. Lemma for bj-endmnd 37341. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
endmndlem.b 𝐵 = (Base‘𝐶)
endmndlem.h 𝐻 = (Hom ‘𝐶)
endmndlem.o · = (comp‘𝐶)
endmndlem.c (𝜑𝐶 ∈ Cat)
endmndlem.x (𝜑𝑋𝐵)
endmndlem.m (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
endmndlem.p (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
Assertion
Ref Expression
endmndlem (𝜑𝑀 ∈ Mnd)

Proof of Theorem endmndlem
Dummy variables 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 endmndlem.m . 2 (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
2 endmndlem.p . 2 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
3 endmndlem.b . . 3 𝐵 = (Base‘𝐶)
4 endmndlem.h . . 3 𝐻 = (Hom ‘𝐶)
5 endmndlem.o . . 3 · = (comp‘𝐶)
6 endmndlem.c . . . 4 (𝜑𝐶 ∈ Cat)
763ad2ant1 1133 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
8 endmndlem.x . . . 4 (𝜑𝑋𝐵)
983ad2ant1 1133 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
10 simp3 1138 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋))
11 simp2 1137 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
123, 4, 5, 7, 9, 9, 9, 10, 11catcocl 17702 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ (𝑋𝐻𝑋))
136adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat)
148adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋𝐵)
15 simpr3 1197 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋))
16 simpr2 1196 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋))
17 simpr1 1195 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋))
183, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17catass 17703 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑘) = (𝑓(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑘)))
19 eqid 2736 . . 3 (Id‘𝐶) = (Id‘𝐶)
203, 4, 19, 6, 8catidcl 17699 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
216adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
228adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
23 simpr 484 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
243, 4, 19, 21, 22, 5, 22, 23catlid 17700 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
253, 4, 19, 21, 22, 5, 22, 23catrid 17701 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓)
261, 2, 12, 18, 20, 24, 25ismndd 18739 1 (𝜑𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4612  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682  Mndcmnd 18717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-cat 17685  df-cid 17686  df-mgm 18623  df-sgrp 18702  df-mnd 18718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator