Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > endmndlem | Structured version Visualization version GIF version |
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 46251 for converting a monoid to a category. Lemma for bj-endmnd 35416. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
endmndlem.b | ⊢ 𝐵 = (Base‘𝐶) |
endmndlem.h | ⊢ 𝐻 = (Hom ‘𝐶) |
endmndlem.o | ⊢ · = (comp‘𝐶) |
endmndlem.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
endmndlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
endmndlem.m | ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) |
endmndlem.p | ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) |
Ref | Expression |
---|---|
endmndlem | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endmndlem.m | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) | |
2 | endmndlem.p | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) | |
3 | endmndlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | endmndlem.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | endmndlem.o | . . 3 ⊢ · = (comp‘𝐶) | |
6 | endmndlem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 6 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
8 | endmndlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 8 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
10 | simp3 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
11 | simp2 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
12 | 3, 4, 5, 7, 9, 9, 9, 10, 11 | catcocl 17311 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ (𝑋𝐻𝑋)) |
13 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat) |
14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋 ∈ 𝐵) |
15 | simpr3 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋)) | |
16 | simpr2 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
17 | simpr1 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
18 | 3, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17 | catass 17312 | . 2 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑘) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑘))) |
19 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
20 | 3, 4, 19, 6, 8 | catidcl 17308 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
21 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
24 | 3, 4, 19, 21, 22, 5, 22, 23 | catlid 17309 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
25 | 3, 4, 19, 21, 22, 5, 22, 23 | catrid 17310 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓) |
26 | 1, 2, 12, 18, 20, 24, 25 | ismndd 18322 | 1 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-cat 17294 df-cid 17295 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |