Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  endmndlem Structured version   Visualization version   GIF version

Theorem endmndlem 49004
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 49567 for converting a monoid to a category. Lemma for bj-endmnd 37306. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
endmndlem.b 𝐵 = (Base‘𝐶)
endmndlem.h 𝐻 = (Hom ‘𝐶)
endmndlem.o · = (comp‘𝐶)
endmndlem.c (𝜑𝐶 ∈ Cat)
endmndlem.x (𝜑𝑋𝐵)
endmndlem.m (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
endmndlem.p (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
Assertion
Ref Expression
endmndlem (𝜑𝑀 ∈ Mnd)

Proof of Theorem endmndlem
Dummy variables 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 endmndlem.m . 2 (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
2 endmndlem.p . 2 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
3 endmndlem.b . . 3 𝐵 = (Base‘𝐶)
4 endmndlem.h . . 3 𝐻 = (Hom ‘𝐶)
5 endmndlem.o . . 3 · = (comp‘𝐶)
6 endmndlem.c . . . 4 (𝜑𝐶 ∈ Cat)
763ad2ant1 1133 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
8 endmndlem.x . . . 4 (𝜑𝑋𝐵)
983ad2ant1 1133 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
10 simp3 1138 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋))
11 simp2 1137 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
123, 4, 5, 7, 9, 9, 9, 10, 11catcocl 17646 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ (𝑋𝐻𝑋))
136adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat)
148adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋𝐵)
15 simpr3 1197 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋))
16 simpr2 1196 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋))
17 simpr1 1195 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋))
183, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17catass 17647 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑘) = (𝑓(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑘)))
19 eqid 2729 . . 3 (Id‘𝐶) = (Id‘𝐶)
203, 4, 19, 6, 8catidcl 17643 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
216adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
228adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
23 simpr 484 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
243, 4, 19, 21, 22, 5, 22, 23catlid 17644 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
253, 4, 19, 21, 22, 5, 22, 23catrid 17645 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓)
261, 2, 12, 18, 20, 24, 25ismndd 18683 1 (𝜑𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-cat 17629  df-cid 17630  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator