| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > endmndlem | Structured version Visualization version GIF version | ||
| Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 49422 for converting a monoid to a category. Lemma for bj-endmnd 37341. (Contributed by Zhi Wang, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| endmndlem.b | ⊢ 𝐵 = (Base‘𝐶) |
| endmndlem.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| endmndlem.o | ⊢ · = (comp‘𝐶) |
| endmndlem.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| endmndlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| endmndlem.m | ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) |
| endmndlem.p | ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) |
| Ref | Expression |
|---|---|
| endmndlem | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endmndlem.m | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) | |
| 2 | endmndlem.p | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) | |
| 3 | endmndlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | endmndlem.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | endmndlem.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 6 | endmndlem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
| 8 | endmndlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
| 10 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
| 11 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
| 12 | 3, 4, 5, 7, 9, 9, 9, 10, 11 | catcocl 17702 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ (𝑋𝐻𝑋)) |
| 13 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat) |
| 14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 15 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋)) | |
| 16 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
| 17 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
| 18 | 3, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17 | catass 17703 | . 2 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑘) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑘))) |
| 19 | eqid 2736 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 20 | 3, 4, 19, 6, 8 | catidcl 17699 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 21 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
| 22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
| 23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
| 24 | 3, 4, 19, 21, 22, 5, 22, 23 | catlid 17700 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
| 25 | 3, 4, 19, 21, 22, 5, 22, 23 | catrid 17701 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓) |
| 26 | 1, 2, 12, 18, 20, 24, 25 | ismndd 18739 | 1 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4612 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Hom chom 17287 compcco 17288 Catccat 17681 Idccid 17682 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-cat 17685 df-cid 17686 df-mgm 18623 df-sgrp 18702 df-mnd 18718 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |