Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  endmndlem Structured version   Visualization version   GIF version

Theorem endmndlem 48209
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 48278 for converting a monoid to a category. Lemma for bj-endmnd 36930. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
endmndlem.b 𝐵 = (Base‘𝐶)
endmndlem.h 𝐻 = (Hom ‘𝐶)
endmndlem.o · = (comp‘𝐶)
endmndlem.c (𝜑𝐶 ∈ Cat)
endmndlem.x (𝜑𝑋𝐵)
endmndlem.m (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
endmndlem.p (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
Assertion
Ref Expression
endmndlem (𝜑𝑀 ∈ Mnd)

Proof of Theorem endmndlem
Dummy variables 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 endmndlem.m . 2 (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
2 endmndlem.p . 2 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
3 endmndlem.b . . 3 𝐵 = (Base‘𝐶)
4 endmndlem.h . . 3 𝐻 = (Hom ‘𝐶)
5 endmndlem.o . . 3 · = (comp‘𝐶)
6 endmndlem.c . . . 4 (𝜑𝐶 ∈ Cat)
763ad2ant1 1130 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
8 endmndlem.x . . . 4 (𝜑𝑋𝐵)
983ad2ant1 1130 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
10 simp3 1135 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋))
11 simp2 1134 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
123, 4, 5, 7, 9, 9, 9, 10, 11catcocl 17673 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ (𝑋𝐻𝑋))
136adantr 479 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat)
148adantr 479 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋𝐵)
15 simpr3 1193 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋))
16 simpr2 1192 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋))
17 simpr1 1191 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋))
183, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17catass 17674 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑘) = (𝑓(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑘)))
19 eqid 2725 . . 3 (Id‘𝐶) = (Id‘𝐶)
203, 4, 19, 6, 8catidcl 17670 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
216adantr 479 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
228adantr 479 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
23 simpr 483 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
243, 4, 19, 21, 22, 5, 22, 23catlid 17671 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
253, 4, 19, 21, 22, 5, 22, 23catrid 17672 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓)
261, 2, 12, 18, 20, 24, 25ismndd 18724 1 (𝜑𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cop 4636  cfv 6549  (class class class)co 7419  Basecbs 17188  +gcplusg 17241  Hom chom 17252  compcco 17253  Catccat 17652  Idccid 17653  Mndcmnd 18702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-cat 17656  df-cid 17657  df-mgm 18608  df-sgrp 18687  df-mnd 18703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator