Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  endmndlem Structured version   Visualization version   GIF version

Theorem endmndlem 49047
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 49610 for converting a monoid to a category. Lemma for bj-endmnd 37352. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
endmndlem.b 𝐵 = (Base‘𝐶)
endmndlem.h 𝐻 = (Hom ‘𝐶)
endmndlem.o · = (comp‘𝐶)
endmndlem.c (𝜑𝐶 ∈ Cat)
endmndlem.x (𝜑𝑋𝐵)
endmndlem.m (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
endmndlem.p (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
Assertion
Ref Expression
endmndlem (𝜑𝑀 ∈ Mnd)

Proof of Theorem endmndlem
Dummy variables 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 endmndlem.m . 2 (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
2 endmndlem.p . 2 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
3 endmndlem.b . . 3 𝐵 = (Base‘𝐶)
4 endmndlem.h . . 3 𝐻 = (Hom ‘𝐶)
5 endmndlem.o . . 3 · = (comp‘𝐶)
6 endmndlem.c . . . 4 (𝜑𝐶 ∈ Cat)
763ad2ant1 1133 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
8 endmndlem.x . . . 4 (𝜑𝑋𝐵)
983ad2ant1 1133 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
10 simp3 1138 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋))
11 simp2 1137 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
123, 4, 5, 7, 9, 9, 9, 10, 11catcocl 17586 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ (𝑋𝐻𝑋))
136adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat)
148adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋𝐵)
15 simpr3 1197 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋))
16 simpr2 1196 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋))
17 simpr1 1195 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋))
183, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17catass 17587 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑘) = (𝑓(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑘)))
19 eqid 2731 . . 3 (Id‘𝐶) = (Id‘𝐶)
203, 4, 19, 6, 8catidcl 17583 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
216adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
228adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
23 simpr 484 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
243, 4, 19, 21, 22, 5, 22, 23catlid 17584 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
253, 4, 19, 21, 22, 5, 22, 23catrid 17585 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓)
261, 2, 12, 18, 20, 24, 25ismndd 18659 1 (𝜑𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4577  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Hom chom 17167  compcco 17168  Catccat 17565  Idccid 17566  Mndcmnd 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-cat 17569  df-cid 17570  df-mgm 18543  df-sgrp 18622  df-mnd 18638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator