![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > endmndlem | Structured version Visualization version GIF version |
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 48751 for converting a monoid to a category. Lemma for bj-endmnd 37284. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
endmndlem.b | ⊢ 𝐵 = (Base‘𝐶) |
endmndlem.h | ⊢ 𝐻 = (Hom ‘𝐶) |
endmndlem.o | ⊢ · = (comp‘𝐶) |
endmndlem.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
endmndlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
endmndlem.m | ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) |
endmndlem.p | ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) |
Ref | Expression |
---|---|
endmndlem | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endmndlem.m | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) | |
2 | endmndlem.p | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) | |
3 | endmndlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | endmndlem.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | endmndlem.o | . . 3 ⊢ · = (comp‘𝐶) | |
6 | endmndlem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
8 | endmndlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
10 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
11 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
12 | 3, 4, 5, 7, 9, 9, 9, 10, 11 | catcocl 17743 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ (𝑋𝐻𝑋)) |
13 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat) |
14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋 ∈ 𝐵) |
15 | simpr3 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋)) | |
16 | simpr2 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
17 | simpr1 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
18 | 3, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17 | catass 17744 | . 2 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑘) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑘))) |
19 | eqid 2740 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
20 | 3, 4, 19, 6, 8 | catidcl 17740 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
21 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
22 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
23 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
24 | 3, 4, 19, 21, 22, 5, 22, 23 | catlid 17741 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
25 | 3, 4, 19, 21, 22, 5, 22, 23 | catrid 17742 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓) |
26 | 1, 2, 12, 18, 20, 24, 25 | ismndd 18794 | 1 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-cat 17726 df-cid 17727 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |