Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > endmndlem | Structured version Visualization version GIF version |
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 46365 for converting a monoid to a category. Lemma for bj-endmnd 35489. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
endmndlem.b | ⊢ 𝐵 = (Base‘𝐶) |
endmndlem.h | ⊢ 𝐻 = (Hom ‘𝐶) |
endmndlem.o | ⊢ · = (comp‘𝐶) |
endmndlem.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
endmndlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
endmndlem.m | ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) |
endmndlem.p | ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) |
Ref | Expression |
---|---|
endmndlem | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endmndlem.m | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) | |
2 | endmndlem.p | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) | |
3 | endmndlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | endmndlem.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | endmndlem.o | . . 3 ⊢ · = (comp‘𝐶) | |
6 | endmndlem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 6 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
8 | endmndlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 8 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
10 | simp3 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
11 | simp2 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
12 | 3, 4, 5, 7, 9, 9, 9, 10, 11 | catcocl 17394 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ (𝑋𝐻𝑋)) |
13 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat) |
14 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋 ∈ 𝐵) |
15 | simpr3 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋)) | |
16 | simpr2 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
17 | simpr1 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
18 | 3, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17 | catass 17395 | . 2 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑘) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑘))) |
19 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
20 | 3, 4, 19, 6, 8 | catidcl 17391 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
21 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
22 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
23 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
24 | 3, 4, 19, 21, 22, 5, 22, 23 | catlid 17392 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
25 | 3, 4, 19, 21, 22, 5, 22, 23 | catrid 17393 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓) |
26 | 1, 2, 12, 18, 20, 24, 25 | ismndd 18407 | 1 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 〈cop 4567 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Hom chom 16973 compcco 16974 Catccat 17373 Idccid 17374 Mndcmnd 18385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-cat 17377 df-cid 17378 df-mgm 18326 df-sgrp 18375 df-mnd 18386 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |