Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  endmndlem Structured version   Visualization version   GIF version

Theorem endmndlem 46184
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 46251 for converting a monoid to a category. Lemma for bj-endmnd 35416. (Contributed by Zhi Wang, 25-Sep-2024.)
Hypotheses
Ref Expression
endmndlem.b 𝐵 = (Base‘𝐶)
endmndlem.h 𝐻 = (Hom ‘𝐶)
endmndlem.o · = (comp‘𝐶)
endmndlem.c (𝜑𝐶 ∈ Cat)
endmndlem.x (𝜑𝑋𝐵)
endmndlem.m (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
endmndlem.p (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
Assertion
Ref Expression
endmndlem (𝜑𝑀 ∈ Mnd)

Proof of Theorem endmndlem
Dummy variables 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 endmndlem.m . 2 (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))
2 endmndlem.p . 2 (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))
3 endmndlem.b . . 3 𝐵 = (Base‘𝐶)
4 endmndlem.h . . 3 𝐻 = (Hom ‘𝐶)
5 endmndlem.o . . 3 · = (comp‘𝐶)
6 endmndlem.c . . . 4 (𝜑𝐶 ∈ Cat)
763ad2ant1 1131 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
8 endmndlem.x . . . 4 (𝜑𝑋𝐵)
983ad2ant1 1131 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
10 simp3 1136 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋))
11 simp2 1135 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
123, 4, 5, 7, 9, 9, 9, 10, 11catcocl 17311 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ (𝑋𝐻𝑋))
136adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat)
148adantr 480 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋𝐵)
15 simpr3 1194 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋))
16 simpr2 1193 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋))
17 simpr1 1192 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋))
183, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17catass 17312 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑘) = (𝑓(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑘)))
19 eqid 2738 . . 3 (Id‘𝐶) = (Id‘𝐶)
203, 4, 19, 6, 8catidcl 17308 . 2 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
216adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat)
228adantr 480 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋𝐵)
23 simpr 484 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋))
243, 4, 19, 21, 22, 5, 22, 23catlid 17309 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
253, 4, 19, 21, 22, 5, 22, 23catrid 17310 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(⟨𝑋, 𝑋· 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓)
261, 2, 12, 18, 20, 24, 25ismndd 18322 1 (𝜑𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-cat 17294  df-cid 17295  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator