![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > endmndlem | Structured version Visualization version GIF version |
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 48278 for converting a monoid to a category. Lemma for bj-endmnd 36930. (Contributed by Zhi Wang, 25-Sep-2024.) |
Ref | Expression |
---|---|
endmndlem.b | ⊢ 𝐵 = (Base‘𝐶) |
endmndlem.h | ⊢ 𝐻 = (Hom ‘𝐶) |
endmndlem.o | ⊢ · = (comp‘𝐶) |
endmndlem.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
endmndlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
endmndlem.m | ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) |
endmndlem.p | ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) |
Ref | Expression |
---|---|
endmndlem | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endmndlem.m | . 2 ⊢ (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀)) | |
2 | endmndlem.p | . 2 ⊢ (𝜑 → (〈𝑋, 𝑋〉 · 𝑋) = (+g‘𝑀)) | |
3 | endmndlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | endmndlem.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | endmndlem.o | . . 3 ⊢ · = (comp‘𝐶) | |
6 | endmndlem.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 6 | 3ad2ant1 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
8 | endmndlem.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 8 | 3ad2ant1 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
10 | simp3 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
11 | simp2 1134 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
12 | 3, 4, 5, 7, 9, 9, 9, 10, 11 | catcocl 17673 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ (𝑋𝐻𝑋)) |
13 | 6 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝐶 ∈ Cat) |
14 | 8 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑋 ∈ 𝐵) |
15 | simpr3 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑘 ∈ (𝑋𝐻𝑋)) | |
16 | simpr2 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑔 ∈ (𝑋𝐻𝑋)) | |
17 | simpr1 1191 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
18 | 3, 4, 5, 13, 14, 14, 14, 15, 16, 14, 17 | catass 17674 | . 2 ⊢ ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑋) ∧ 𝑔 ∈ (𝑋𝐻𝑋) ∧ 𝑘 ∈ (𝑋𝐻𝑋))) → ((𝑓(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑘) = (𝑓(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑘))) |
19 | eqid 2725 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
20 | 3, 4, 19, 6, 8 | catidcl 17670 | . 2 ⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
21 | 6 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝐶 ∈ Cat) |
22 | 8 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑋 ∈ 𝐵) |
23 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → 𝑓 ∈ (𝑋𝐻𝑋)) | |
24 | 3, 4, 19, 21, 22, 5, 22, 23 | catlid 17671 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
25 | 3, 4, 19, 21, 22, 5, 22, 23 | catrid 17672 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑋)) → (𝑓(〈𝑋, 𝑋〉 · 𝑋)((Id‘𝐶)‘𝑋)) = 𝑓) |
26 | 1, 2, 12, 18, 20, 24, 25 | ismndd 18724 | 1 ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 〈cop 4636 ‘cfv 6549 (class class class)co 7419 Basecbs 17188 +gcplusg 17241 Hom chom 17252 compcco 17253 Catccat 17652 Idccid 17653 Mndcmnd 18702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-cat 17656 df-cid 17657 df-mgm 18608 df-sgrp 18687 df-mnd 18703 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |