| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > catprs2 | Structured version Visualization version GIF version | ||
| Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 48867 and catprsc2 48868 for constructions satisfying the hypothesis "catprs.1". See catprs 48865 for a more primitive version. See prsthinc 49135 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| catprs.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) |
| catprs.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| catprs.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| catprs.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| catprs2.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
| Ref | Expression |
|---|---|
| catprs2 | ⊢ (𝜑 → 𝐶 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) | |
| 2 | catprs.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 3 | catprs.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 4 | catprs.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1, 2, 3, 4 | catprs 48865 | . . 3 ⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
| 6 | 5 | ralrimivvva 3188 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
| 7 | catprs2.l | . . 3 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
| 8 | 2, 7, 4 | isprsd 48808 | . 2 ⊢ (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢)))) |
| 9 | 6, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∅c0 4306 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 lecple 17263 Hom chom 17267 Catccat 17661 Proset cproset 18289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-cat 17665 df-cid 17666 df-proset 18291 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |