Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs2 Structured version   Visualization version   GIF version

Theorem catprs2 48866
Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 48867 and catprsc2 48868 for constructions satisfying the hypothesis "catprs.1". See catprs 48865 for a more primitive version. See prsthinc 49135 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprs.b (𝜑𝐵 = (Base‘𝐶))
catprs.h (𝜑𝐻 = (Hom ‘𝐶))
catprs.c (𝜑𝐶 ∈ Cat)
catprs2.l (𝜑 = (le‘𝐶))
Assertion
Ref Expression
catprs2 (𝜑𝐶 ∈ Proset )
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem catprs2
Dummy variables 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catprs.1 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
2 catprs.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
3 catprs.h . . . 4 (𝜑𝐻 = (Hom ‘𝐶))
4 catprs.c . . . 4 (𝜑𝐶 ∈ Cat)
51, 2, 3, 4catprs 48865 . . 3 ((𝜑 ∧ (𝑤𝐵𝑣𝐵𝑢𝐵)) → (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢)))
65ralrimivvva 3188 . 2 (𝜑 → ∀𝑤𝐵𝑣𝐵𝑢𝐵 (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢)))
7 catprs2.l . . 3 (𝜑 = (le‘𝐶))
82, 7, 4isprsd 48808 . 2 (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤𝐵𝑣𝐵𝑢𝐵 (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢))))
96, 8mpbird 257 1 (𝜑𝐶 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  c0 4306   class class class wbr 5116  cfv 6527  (class class class)co 7399  Basecbs 17213  lecple 17263  Hom chom 17267  Catccat 17661   Proset cproset 18289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-cat 17665  df-cid 17666  df-proset 18291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator