| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > catprs2 | Structured version Visualization version GIF version | ||
| Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 49053 and catprsc2 49054 for constructions satisfying the hypothesis "catprs.1". See catprs 49051 for a more primitive version. See prsthinc 49504 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| catprs.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) |
| catprs.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| catprs.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| catprs.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| catprs2.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
| Ref | Expression |
|---|---|
| catprs2 | ⊢ (𝜑 → 𝐶 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) | |
| 2 | catprs.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
| 3 | catprs.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
| 4 | catprs.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1, 2, 3, 4 | catprs 49051 | . . 3 ⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
| 6 | 5 | ralrimivvva 3178 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
| 7 | catprs2.l | . . 3 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
| 8 | 2, 7, 4 | isprsd 48994 | . 2 ⊢ (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢)))) |
| 9 | 6, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 Hom chom 17172 Catccat 17570 Proset cproset 18198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-cat 17574 df-cid 17575 df-proset 18200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |