Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs2 Structured version   Visualization version   GIF version

Theorem catprs2 47720
Description: A category equipped with the induced preorder, where an object π‘₯ is defined to be "less than or equal to" 𝑦 iff there is a morphism from π‘₯ to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 47721 and catprsc2 47722 for constructions satisfying the hypothesis "catprs.1". See catprs 47719 for a more primitive version. See prsthinc 47762 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘₯𝐻𝑦) β‰  βˆ…))
catprs.b (πœ‘ β†’ 𝐡 = (Baseβ€˜πΆ))
catprs.h (πœ‘ β†’ 𝐻 = (Hom β€˜πΆ))
catprs.c (πœ‘ β†’ 𝐢 ∈ Cat)
catprs2.l (πœ‘ β†’ ≀ = (leβ€˜πΆ))
Assertion
Ref Expression
catprs2 (πœ‘ β†’ 𝐢 ∈ Proset )
Distinct variable groups:   π‘₯, ≀ ,𝑦   π‘₯,𝐡,𝑦   π‘₯,𝐻,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦)   𝐢(π‘₯,𝑦)

Proof of Theorem catprs2
Dummy variables 𝑀 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catprs.1 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (π‘₯𝐻𝑦) β‰  βˆ…))
2 catprs.b . . . 4 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΆ))
3 catprs.h . . . 4 (πœ‘ β†’ 𝐻 = (Hom β€˜πΆ))
4 catprs.c . . . 4 (πœ‘ β†’ 𝐢 ∈ Cat)
51, 2, 3, 4catprs 47719 . . 3 ((πœ‘ ∧ (𝑀 ∈ 𝐡 ∧ 𝑣 ∈ 𝐡 ∧ 𝑒 ∈ 𝐡)) β†’ (𝑀 ≀ 𝑀 ∧ ((𝑀 ≀ 𝑣 ∧ 𝑣 ≀ 𝑒) β†’ 𝑀 ≀ 𝑒)))
65ralrimivvva 3202 . 2 (πœ‘ β†’ βˆ€π‘€ ∈ 𝐡 βˆ€π‘£ ∈ 𝐡 βˆ€π‘’ ∈ 𝐡 (𝑀 ≀ 𝑀 ∧ ((𝑀 ≀ 𝑣 ∧ 𝑣 ≀ 𝑒) β†’ 𝑀 ≀ 𝑒)))
7 catprs2.l . . 3 (πœ‘ β†’ ≀ = (leβ€˜πΆ))
82, 7, 4isprsd 47676 . 2 (πœ‘ β†’ (𝐢 ∈ Proset ↔ βˆ€π‘€ ∈ 𝐡 βˆ€π‘£ ∈ 𝐡 βˆ€π‘’ ∈ 𝐡 (𝑀 ≀ 𝑀 ∧ ((𝑀 ≀ 𝑣 ∧ 𝑣 ≀ 𝑒) β†’ 𝑀 ≀ 𝑒))))
96, 8mpbird 257 1 (πœ‘ β†’ 𝐢 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  lecple 17209  Hom chom 17213  Catccat 17613   Proset cproset 18251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-cat 17617  df-cid 17618  df-proset 18253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator