Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs2 Structured version   Visualization version   GIF version

Theorem catprs2 48997
Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 48998 and catprsc2 48999 for constructions satisfying the hypothesis "catprs.1". See catprs 48996 for a more primitive version. See prsthinc 49449 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprs.b (𝜑𝐵 = (Base‘𝐶))
catprs.h (𝜑𝐻 = (Hom ‘𝐶))
catprs.c (𝜑𝐶 ∈ Cat)
catprs2.l (𝜑 = (le‘𝐶))
Assertion
Ref Expression
catprs2 (𝜑𝐶 ∈ Proset )
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem catprs2
Dummy variables 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catprs.1 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
2 catprs.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
3 catprs.h . . . 4 (𝜑𝐻 = (Hom ‘𝐶))
4 catprs.c . . . 4 (𝜑𝐶 ∈ Cat)
51, 2, 3, 4catprs 48996 . . 3 ((𝜑 ∧ (𝑤𝐵𝑣𝐵𝑢𝐵)) → (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢)))
65ralrimivvva 3175 . 2 (𝜑 → ∀𝑤𝐵𝑣𝐵𝑢𝐵 (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢)))
7 catprs2.l . . 3 (𝜑 = (le‘𝐶))
82, 7, 4isprsd 48939 . 2 (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤𝐵𝑣𝐵𝑢𝐵 (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢))))
96, 8mpbird 257 1 (𝜑𝐶 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  Hom chom 17172  Catccat 17570   Proset cproset 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-cat 17574  df-cid 17575  df-proset 18200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator