![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > catprs2 | Structured version Visualization version GIF version |
Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 48670 and catprsc2 48671 for constructions satisfying the hypothesis "catprs.1". See catprs 48668 for a more primitive version. See prsthinc 48711 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
catprs.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) |
catprs.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
catprs.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
catprs.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
catprs2.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
Ref | Expression |
---|---|
catprs2 | ⊢ (𝜑 → 𝐶 ∈ Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catprs.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) | |
2 | catprs.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
3 | catprs.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
4 | catprs.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1, 2, 3, 4 | catprs 48668 | . . 3 ⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
6 | 5 | ralrimivvva 3211 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
7 | catprs2.l | . . 3 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
8 | 2, 7, 4 | isprsd 48625 | . 2 ⊢ (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢)))) |
9 | 6, 8 | mpbird 257 | 1 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 class class class wbr 5166 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 lecple 17312 Hom chom 17316 Catccat 17716 Proset cproset 18357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-cat 17720 df-cid 17721 df-proset 18359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |