![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > catprs2 | Structured version Visualization version GIF version |
Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 48205 and catprsc2 48206 for constructions satisfying the hypothesis "catprs.1". See catprs 48203 for a more primitive version. See prsthinc 48246 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
catprs.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) |
catprs.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
catprs.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
catprs.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
catprs2.l | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
Ref | Expression |
---|---|
catprs2 | ⊢ (𝜑 → 𝐶 ∈ Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catprs.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅)) | |
2 | catprs.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
3 | catprs.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) | |
4 | catprs.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1, 2, 3, 4 | catprs 48203 | . . 3 ⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵)) → (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
6 | 5 | ralrimivvva 3193 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢))) |
7 | catprs2.l | . . 3 ⊢ (𝜑 → ≤ = (le‘𝐶)) | |
8 | 2, 7, 4 | isprsd 48160 | . 2 ⊢ (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐵 (𝑤 ≤ 𝑤 ∧ ((𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢) → 𝑤 ≤ 𝑢)))) |
9 | 6, 8 | mpbird 256 | 1 ⊢ (𝜑 → 𝐶 ∈ Proset ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ∅c0 4322 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 Hom chom 17247 Catccat 17647 Proset cproset 18288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-cat 17651 df-cid 17652 df-proset 18290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |