Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprs2 Structured version   Visualization version   GIF version

Theorem catprs2 49052
Description: A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 49053 and catprsc2 49054 for constructions satisfying the hypothesis "catprs.1". See catprs 49051 for a more primitive version. See prsthinc 49504 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catprs.1 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
catprs.b (𝜑𝐵 = (Base‘𝐶))
catprs.h (𝜑𝐻 = (Hom ‘𝐶))
catprs.c (𝜑𝐶 ∈ Cat)
catprs2.l (𝜑 = (le‘𝐶))
Assertion
Ref Expression
catprs2 (𝜑𝐶 ∈ Proset )
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem catprs2
Dummy variables 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catprs.1 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))
2 catprs.b . . . 4 (𝜑𝐵 = (Base‘𝐶))
3 catprs.h . . . 4 (𝜑𝐻 = (Hom ‘𝐶))
4 catprs.c . . . 4 (𝜑𝐶 ∈ Cat)
51, 2, 3, 4catprs 49051 . . 3 ((𝜑 ∧ (𝑤𝐵𝑣𝐵𝑢𝐵)) → (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢)))
65ralrimivvva 3178 . 2 (𝜑 → ∀𝑤𝐵𝑣𝐵𝑢𝐵 (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢)))
7 catprs2.l . . 3 (𝜑 = (le‘𝐶))
82, 7, 4isprsd 48994 . 2 (𝜑 → (𝐶 ∈ Proset ↔ ∀𝑤𝐵𝑣𝐵𝑢𝐵 (𝑤 𝑤 ∧ ((𝑤 𝑣𝑣 𝑢) → 𝑤 𝑢))))
96, 8mpbird 257 1 (𝜑𝐶 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  Hom chom 17172  Catccat 17570   Proset cproset 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-cat 17574  df-cid 17575  df-proset 18200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator