Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc Structured version   Visualization version   GIF version

Theorem catprsc 49002
Description: A construction of the preorder induced by a category. See catprs2 49001 for details. See also catprsc2 49003 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypothesis
Ref Expression
catprsc.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})
Assertion
Ref Expression
catprsc (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵,𝑥,𝑦   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc
StepHypRef Expression
1 catprsc.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})
21breqd 5103 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤))
3 vex 3440 . . . . 5 𝑧 ∈ V
4 vex 3440 . . . . 5 𝑤 ∈ V
5 simpl 482 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
65eleq1d 2813 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐵𝑧𝐵))
7 simpr 484 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑦 = 𝑤)
87eleq1d 2813 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐵))
9 oveq12 7358 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
109neeq1d 2984 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
116, 8, 103anbi123d 1438 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧𝐵𝑤𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅)))
12 df-3an 1088 . . . . . 6 ((𝑧𝐵𝑤𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅) ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))
1311, 12bitrdi 287 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)))
14 eqid 2729 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}
153, 4, 13, 14braba 5480 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤 ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))
162, 15bitrdi 287 . . 3 (𝜑 → (𝑧 𝑤 ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)))
1716baibd 539 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1817ralrimivva 3172 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4284   class class class wbr 5092  {copab 5154  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator