Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > catprsc | Structured version Visualization version GIF version |
Description: A construction of the preorder induced by a category. See catprs2 45821 for details. See also catprsc2 45823 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
catprsc.1 | ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) |
Ref | Expression |
---|---|
catprsc | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catprsc.1 | . . . . 5 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) | |
2 | 1 | breqd 5051 | . . . 4 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤)) |
3 | vex 3404 | . . . . 5 ⊢ 𝑧 ∈ V | |
4 | vex 3404 | . . . . 5 ⊢ 𝑤 ∈ V | |
5 | simpl 486 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
6 | 5 | eleq1d 2818 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
7 | simpr 488 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
8 | 7 | eleq1d 2818 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
9 | oveq12 7191 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤)) | |
10 | 9 | neeq1d 2994 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅)) |
11 | 6, 8, 10 | 3anbi123d 1437 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅))) |
12 | df-3an 1090 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)) | |
13 | 11, 12 | bitrdi 290 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))) |
14 | eqid 2739 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} | |
15 | 3, 4, 13, 14 | braba 5402 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤 ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)) |
16 | 2, 15 | bitrdi 290 | . . 3 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))) |
17 | 16 | baibd 543 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
18 | 17 | ralrimivva 3104 | 1 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∀wral 3054 ∅c0 4221 class class class wbr 5040 {copab 5102 (class class class)co 7182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ne 2936 df-ral 3059 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-iota 6307 df-fv 6357 df-ov 7185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |