| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > catprsc | Structured version Visualization version GIF version | ||
| Description: A construction of the preorder induced by a category. See catprs2 48967 for details. See also catprsc2 48969 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| catprsc.1 | ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) |
| Ref | Expression |
|---|---|
| catprsc | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprsc.1 | . . . . 5 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) | |
| 2 | 1 | breqd 5135 | . . . 4 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤)) |
| 3 | vex 3468 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 4 | vex 3468 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 5 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
| 6 | 5 | eleq1d 2820 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
| 7 | simpr 484 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
| 8 | 7 | eleq1d 2820 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
| 9 | oveq12 7419 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤)) | |
| 10 | 9 | neeq1d 2992 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| 11 | 6, 8, 10 | 3anbi123d 1438 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅))) |
| 12 | df-3an 1088 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))) |
| 14 | eqid 2736 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} | |
| 15 | 3, 4, 13, 14 | braba 5517 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤 ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)) |
| 16 | 2, 15 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))) |
| 17 | 16 | baibd 539 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| 18 | 17 | ralrimivva 3188 | 1 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∅c0 4313 class class class wbr 5124 {copab 5186 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |