Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc Structured version   Visualization version   GIF version

Theorem catprsc 48205
Description: A construction of the preorder induced by a category. See catprs2 48204 for details. See also catprsc2 48206 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypothesis
Ref Expression
catprsc.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})
Assertion
Ref Expression
catprsc (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵,𝑥,𝑦   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc
StepHypRef Expression
1 catprsc.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})
21breqd 5160 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤))
3 vex 3465 . . . . 5 𝑧 ∈ V
4 vex 3465 . . . . 5 𝑤 ∈ V
5 simpl 481 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
65eleq1d 2810 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐵𝑧𝐵))
7 simpr 483 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑦 = 𝑤)
87eleq1d 2810 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐵))
9 oveq12 7428 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
109neeq1d 2989 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
116, 8, 103anbi123d 1432 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧𝐵𝑤𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅)))
12 df-3an 1086 . . . . . 6 ((𝑧𝐵𝑤𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅) ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))
1311, 12bitrdi 286 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)))
14 eqid 2725 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}
153, 4, 13, 14braba 5539 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤 ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))
162, 15bitrdi 286 . . 3 (𝜑 → (𝑧 𝑤 ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)))
1716baibd 538 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1817ralrimivva 3190 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  c0 4322   class class class wbr 5149  {copab 5211  (class class class)co 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-iota 6501  df-fv 6557  df-ov 7422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator