Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  catprsc Structured version   Visualization version   GIF version

Theorem catprsc 48680
Description: A construction of the preorder induced by a category. See catprs2 48679 for details. See also catprsc2 48681 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypothesis
Ref Expression
catprsc.1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})
Assertion
Ref Expression
catprsc (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Distinct variable groups:   𝑤,𝐵,𝑥,𝑦   𝑥,𝐻,𝑦   𝜑,𝑤,𝑧   𝑥,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑧)   𝐻(𝑧,𝑤)   (𝑥,𝑦,𝑧,𝑤)

Proof of Theorem catprsc
StepHypRef Expression
1 catprsc.1 . . . . 5 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})
21breqd 5177 . . . 4 (𝜑 → (𝑧 𝑤𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤))
3 vex 3492 . . . . 5 𝑧 ∈ V
4 vex 3492 . . . . 5 𝑤 ∈ V
5 simpl 482 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
65eleq1d 2829 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐵𝑧𝐵))
7 simpr 484 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑦 = 𝑤)
87eleq1d 2829 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐵))
9 oveq12 7457 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤))
109neeq1d 3006 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅))
116, 8, 103anbi123d 1436 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧𝐵𝑤𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅)))
12 df-3an 1089 . . . . . 6 ((𝑧𝐵𝑤𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅) ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))
1311, 12bitrdi 287 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)))
14 eqid 2740 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}
153, 4, 13, 14braba 5556 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤 ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))
162, 15bitrdi 287 . . 3 (𝜑 → (𝑧 𝑤 ↔ ((𝑧𝐵𝑤𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)))
1716baibd 539 . 2 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
1817ralrimivva 3208 1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  c0 4352   class class class wbr 5166  {copab 5228  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator