Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > catprsc | Structured version Visualization version GIF version |
Description: A construction of the preorder induced by a category. See catprs2 46181 for details. See also catprsc2 46183 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
catprsc.1 | ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) |
Ref | Expression |
---|---|
catprsc | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catprsc.1 | . . . . 5 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}) | |
2 | 1 | breqd 5081 | . . . 4 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ 𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤)) |
3 | vex 3426 | . . . . 5 ⊢ 𝑧 ∈ V | |
4 | vex 3426 | . . . . 5 ⊢ 𝑤 ∈ V | |
5 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) | |
6 | 5 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
7 | simpr 484 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤) | |
8 | 7 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵)) |
9 | oveq12 7264 | . . . . . . . 8 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑥𝐻𝑦) = (𝑧𝐻𝑤)) | |
10 | 9 | neeq1d 3002 | . . . . . . 7 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥𝐻𝑦) ≠ ∅ ↔ (𝑧𝐻𝑤) ≠ ∅)) |
11 | 6, 8, 10 | 3anbi123d 1434 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅))) |
12 | df-3an 1087 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ (𝑧𝐻𝑤) ≠ ∅) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)) | |
13 | 11, 12 | bitrdi 286 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅) ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))) |
14 | eqid 2738 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)} | |
15 | 3, 4, 13, 14 | braba 5443 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)}𝑤 ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅)) |
16 | 2, 15 | bitrdi 286 | . . 3 ⊢ (𝜑 → (𝑧 ≤ 𝑤 ↔ ((𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝑧𝐻𝑤) ≠ ∅))) |
17 | 16 | baibd 539 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
18 | 17 | ralrimivva 3114 | 1 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧 ≤ 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 class class class wbr 5070 {copab 5132 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |