MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4a Structured version   Visualization version   GIF version

Theorem minvecolem4a 30863
Description: Lemma for minveco 30870. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4a (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4a
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 30800 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . 5 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . . . 7 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 3947 . . . . . . 7 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 218 . . . . . 6 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 494 . . . . 5 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
9 minveco.d . . . . . 6 𝐷 = (IndMet‘𝑈)
10 eqid 2736 . . . . . 6 (IndMet‘𝑊) = (IndMet‘𝑊)
11 eqid 2736 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
128, 9, 10, 11sspims 30725 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
133, 7, 12syl2anc 584 . . . 4 (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
146simprd 495 . . . . 5 (𝜑𝑊 ∈ CBan)
15 eqid 2736 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1615, 10cbncms 30851 . . . . 5 (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1714, 16syl 17 . . . 4 (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1813, 17eqeltrrd 2836 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)))
19 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
20 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
21 minveco.n . . . . 5 𝑁 = (normCV𝑈)
22 minveco.a . . . . 5 (𝜑𝐴𝑋)
23 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . 5 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . 5 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
2819, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27minvecolem3 30862 . . . 4 (𝜑𝐹 ∈ (Cau‘𝐷))
2919, 9imsmet 30677 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
301, 2, 293syl 18 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
31 metxmet 24278 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3230, 31syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
33 causs 25255 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3432, 26, 33syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3528, 34mpbid 232 . . 3 (𝜑𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))
36 eqid 2736 . . . 4 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3736cmetcau 25246 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
3818, 35, 37syl2anc 584 . 2 (𝜑𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
39 xmetres 24308 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
4036methaus 24464 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
4132, 39, 403syl 18 . . 3 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
42 lmfun 23324 . . 3 ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
43 funfvbrb 7046 . . 3 (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4441, 42, 433syl 18 . 2 (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4538, 44mpbid 232 1 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3930   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  cres 5661  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  infcinf 9458  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275   / cdiv 11899  cn 12245  2c2 12300  cexp 14084  ∞Metcxmet 21305  Metcmet 21306  MetOpencmopn 21310  𝑡clm 23169  Hauscha 23251  Cauccau 25210  CMetccmet 25211  NrmCVeccnv 30570  BaseSetcba 30572  𝑣 cnsb 30575  normCVcnmcv 30576  IndMetcims 30577  SubSpcss 30707  CPreHilOLDccphlo 30798  CBanccbn 30848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-icc 13374  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-bases 22889  df-ntr 22963  df-nei 23041  df-lm 23172  df-haus 23258  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-cfil 25212  df-cau 25213  df-cmet 25214  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-ssp 30708  df-ph 30799  df-cbn 30849
This theorem is referenced by:  minvecolem4b  30864  minvecolem4  30866
  Copyright terms: Public domain W3C validator