MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4a Structured version   Visualization version   GIF version

Theorem minvecolem4a 28649
Description: Lemma for minveco 28656. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4a (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4a
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 28586 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . 5 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . . . 7 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 3934 . . . . . . 7 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 221 . . . . . 6 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 498 . . . . 5 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
9 minveco.d . . . . . 6 𝐷 = (IndMet‘𝑈)
10 eqid 2824 . . . . . 6 (IndMet‘𝑊) = (IndMet‘𝑊)
11 eqid 2824 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
128, 9, 10, 11sspims 28511 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
133, 7, 12syl2anc 587 . . . 4 (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
146simprd 499 . . . . 5 (𝜑𝑊 ∈ CBan)
15 eqid 2824 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1615, 10cbncms 28637 . . . . 5 (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1714, 16syl 17 . . . 4 (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1813, 17eqeltrrd 2917 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)))
19 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
20 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
21 minveco.n . . . . 5 𝑁 = (normCV𝑈)
22 minveco.a . . . . 5 (𝜑𝐴𝑋)
23 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . 5 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . 5 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
2819, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27minvecolem3 28648 . . . 4 (𝜑𝐹 ∈ (Cau‘𝐷))
2919, 9imsmet 28463 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
301, 2, 293syl 18 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
31 metxmet 22930 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3230, 31syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
33 causs 23891 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3432, 26, 33syl2anc 587 . . . 4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3528, 34mpbid 235 . . 3 (𝜑𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))
36 eqid 2824 . . . 4 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3736cmetcau 23882 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
3818, 35, 37syl2anc 587 . 2 (𝜑𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
39 xmetres 22960 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
4036methaus 23116 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
4132, 39, 403syl 18 . . 3 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
42 lmfun 21975 . . 3 ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
43 funfvbrb 6802 . . 3 (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4441, 42, 433syl 18 . 2 (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4538, 44mpbid 235 1 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cin 3917   class class class wbr 5047  cmpt 5127   × cxp 5534  dom cdm 5536  ran crn 5537  cres 5538  Fun wfun 6330  wf 6332  cfv 6336  (class class class)co 7138  infcinf 8889  cr 10521  1c1 10523   + caddc 10525   < clt 10660  cle 10661   / cdiv 11282  cn 11623  2c2 11678  cexp 13423  ∞Metcxmet 20516  Metcmet 20517  MetOpencmopn 20521  𝑡clm 21820  Hauscha 21902  Cauccau 23846  CMetccmet 23847  NrmCVeccnv 28356  BaseSetcba 28358  𝑣 cnsb 28361  normCVcnmcv 28362  IndMetcims 28363  SubSpcss 28493  CPreHilOLDccphlo 28584  CBanccbn 28634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-n0 11884  df-z 11968  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ico 12730  df-icc 12731  df-fl 13155  df-seq 13363  df-exp 13424  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-rest 16685  df-topgen 16706  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-top 21488  df-topon 21505  df-bases 21540  df-ntr 21614  df-nei 21692  df-lm 21823  df-haus 21909  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-cfil 23848  df-cau 23849  df-cmet 23850  df-grpo 28265  df-gid 28266  df-ginv 28267  df-gdiv 28268  df-ablo 28317  df-vc 28331  df-nv 28364  df-va 28367  df-ba 28368  df-sm 28369  df-0v 28370  df-vs 28371  df-nmcv 28372  df-ims 28373  df-ssp 28494  df-ph 28585  df-cbn 28635
This theorem is referenced by:  minvecolem4b  28650  minvecolem4  28652
  Copyright terms: Public domain W3C validator