![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version |
Description: Lemma for minveco 30681. πΉ is convergent in the subspace topology on π. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | β’ π = (BaseSetβπ) |
minveco.m | β’ π = ( βπ£ βπ) |
minveco.n | β’ π = (normCVβπ) |
minveco.y | β’ π = (BaseSetβπ) |
minveco.u | β’ (π β π β CPreHilOLD) |
minveco.w | β’ (π β π β ((SubSpβπ) β© CBan)) |
minveco.a | β’ (π β π΄ β π) |
minveco.d | β’ π· = (IndMetβπ) |
minveco.j | β’ π½ = (MetOpenβπ·) |
minveco.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ππ¦))) |
minveco.s | β’ π = inf(π , β, < ) |
minveco.f | β’ (π β πΉ:ββΆπ) |
minveco.1 | β’ ((π β§ π β β) β ((π΄π·(πΉβπ))β2) β€ ((πβ2) + (1 / π))) |
Ref | Expression |
---|---|
minvecolem4a | β’ (π β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . . . 6 β’ (π β π β CPreHilOLD) | |
2 | phnv 30611 | . . . . . 6 β’ (π β CPreHilOLD β π β NrmCVec) | |
3 | 1, 2 | syl 17 | . . . . 5 β’ (π β π β NrmCVec) |
4 | minveco.w | . . . . . . 7 β’ (π β π β ((SubSpβπ) β© CBan)) | |
5 | elin 3960 | . . . . . . 7 β’ (π β ((SubSpβπ) β© CBan) β (π β (SubSpβπ) β§ π β CBan)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 β’ (π β (π β (SubSpβπ) β§ π β CBan)) |
7 | 6 | simpld 494 | . . . . 5 β’ (π β π β (SubSpβπ)) |
8 | minveco.y | . . . . . 6 β’ π = (BaseSetβπ) | |
9 | minveco.d | . . . . . 6 β’ π· = (IndMetβπ) | |
10 | eqid 2727 | . . . . . 6 β’ (IndMetβπ) = (IndMetβπ) | |
11 | eqid 2727 | . . . . . 6 β’ (SubSpβπ) = (SubSpβπ) | |
12 | 8, 9, 10, 11 | sspims 30536 | . . . . 5 β’ ((π β NrmCVec β§ π β (SubSpβπ)) β (IndMetβπ) = (π· βΎ (π Γ π))) |
13 | 3, 7, 12 | syl2anc 583 | . . . 4 β’ (π β (IndMetβπ) = (π· βΎ (π Γ π))) |
14 | 6 | simprd 495 | . . . . 5 β’ (π β π β CBan) |
15 | eqid 2727 | . . . . . 6 β’ (BaseSetβπ) = (BaseSetβπ) | |
16 | 15, 10 | cbncms 30662 | . . . . 5 β’ (π β CBan β (IndMetβπ) β (CMetβ(BaseSetβπ))) |
17 | 14, 16 | syl 17 | . . . 4 β’ (π β (IndMetβπ) β (CMetβ(BaseSetβπ))) |
18 | 13, 17 | eqeltrrd 2829 | . . 3 β’ (π β (π· βΎ (π Γ π)) β (CMetβ(BaseSetβπ))) |
19 | minveco.x | . . . . 5 β’ π = (BaseSetβπ) | |
20 | minveco.m | . . . . 5 β’ π = ( βπ£ βπ) | |
21 | minveco.n | . . . . 5 β’ π = (normCVβπ) | |
22 | minveco.a | . . . . 5 β’ (π β π΄ β π) | |
23 | minveco.j | . . . . 5 β’ π½ = (MetOpenβπ·) | |
24 | minveco.r | . . . . 5 β’ π = ran (π¦ β π β¦ (πβ(π΄ππ¦))) | |
25 | minveco.s | . . . . 5 β’ π = inf(π , β, < ) | |
26 | minveco.f | . . . . 5 β’ (π β πΉ:ββΆπ) | |
27 | minveco.1 | . . . . 5 β’ ((π β§ π β β) β ((π΄π·(πΉβπ))β2) β€ ((πβ2) + (1 / π))) | |
28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 30673 | . . . 4 β’ (π β πΉ β (Cauβπ·)) |
29 | 19, 9 | imsmet 30488 | . . . . . . 7 β’ (π β NrmCVec β π· β (Metβπ)) |
30 | 1, 2, 29 | 3syl 18 | . . . . . 6 β’ (π β π· β (Metβπ)) |
31 | metxmet 24227 | . . . . . 6 β’ (π· β (Metβπ) β π· β (βMetβπ)) | |
32 | 30, 31 | syl 17 | . . . . 5 β’ (π β π· β (βMetβπ)) |
33 | causs 25213 | . . . . 5 β’ ((π· β (βMetβπ) β§ πΉ:ββΆπ) β (πΉ β (Cauβπ·) β πΉ β (Cauβ(π· βΎ (π Γ π))))) | |
34 | 32, 26, 33 | syl2anc 583 | . . . 4 β’ (π β (πΉ β (Cauβπ·) β πΉ β (Cauβ(π· βΎ (π Γ π))))) |
35 | 28, 34 | mpbid 231 | . . 3 β’ (π β πΉ β (Cauβ(π· βΎ (π Γ π)))) |
36 | eqid 2727 | . . . 4 β’ (MetOpenβ(π· βΎ (π Γ π))) = (MetOpenβ(π· βΎ (π Γ π))) | |
37 | 36 | cmetcau 25204 | . . 3 β’ (((π· βΎ (π Γ π)) β (CMetβ(BaseSetβπ)) β§ πΉ β (Cauβ(π· βΎ (π Γ π)))) β πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π))))) |
38 | 18, 35, 37 | syl2anc 583 | . 2 β’ (π β πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π))))) |
39 | xmetres 24257 | . . . 4 β’ (π· β (βMetβπ) β (π· βΎ (π Γ π)) β (βMetβ(π β© π))) | |
40 | 36 | methaus 24416 | . . . 4 β’ ((π· βΎ (π Γ π)) β (βMetβ(π β© π)) β (MetOpenβ(π· βΎ (π Γ π))) β Haus) |
41 | 32, 39, 40 | 3syl 18 | . . 3 β’ (π β (MetOpenβ(π· βΎ (π Γ π))) β Haus) |
42 | lmfun 23272 | . . 3 β’ ((MetOpenβ(π· βΎ (π Γ π))) β Haus β Fun (βπ‘β(MetOpenβ(π· βΎ (π Γ π))))) | |
43 | funfvbrb 7054 | . . 3 β’ (Fun (βπ‘β(MetOpenβ(π· βΎ (π Γ π)))) β (πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π)))) β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ))) | |
44 | 41, 42, 43 | 3syl 18 | . 2 β’ (π β (πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π)))) β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ))) |
45 | 38, 44 | mpbid 231 | 1 β’ (π β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 β© cin 3943 class class class wbr 5142 β¦ cmpt 5225 Γ cxp 5670 dom cdm 5672 ran crn 5673 βΎ cres 5674 Fun wfun 6536 βΆwf 6538 βcfv 6542 (class class class)co 7414 infcinf 9456 βcr 11129 1c1 11131 + caddc 11133 < clt 11270 β€ cle 11271 / cdiv 11893 βcn 12234 2c2 12289 βcexp 14050 βMetcxmet 21251 Metcmet 21252 MetOpencmopn 21256 βπ‘clm 23117 Hauscha 23199 Cauccau 25168 CMetccmet 25169 NrmCVeccnv 30381 BaseSetcba 30383 βπ£ cnsb 30386 normCVcnmcv 30387 IndMetcims 30388 SubSpcss 30518 CPreHilOLDccphlo 30609 CBanccbn 30659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-n0 12495 df-z 12581 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ico 13354 df-icc 13355 df-fl 13781 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-rest 17395 df-topgen 17416 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-top 22783 df-topon 22800 df-bases 22836 df-ntr 22911 df-nei 22989 df-lm 23120 df-haus 23206 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-cfil 25170 df-cau 25171 df-cmet 25172 df-grpo 30290 df-gid 30291 df-ginv 30292 df-gdiv 30293 df-ablo 30342 df-vc 30356 df-nv 30389 df-va 30392 df-ba 30393 df-sm 30394 df-0v 30395 df-vs 30396 df-nmcv 30397 df-ims 30398 df-ssp 30519 df-ph 30610 df-cbn 30660 |
This theorem is referenced by: minvecolem4b 30675 minvecolem4 30677 |
Copyright terms: Public domain | W3C validator |