MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4a Structured version   Visualization version   GIF version

Theorem minvecolem4a 30897
Description: Lemma for minveco 30904. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4a (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4a
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 30834 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . 5 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . . . 7 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 3966 . . . . . . 7 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 218 . . . . . 6 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 494 . . . . 5 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
9 minveco.d . . . . . 6 𝐷 = (IndMet‘𝑈)
10 eqid 2736 . . . . . 6 (IndMet‘𝑊) = (IndMet‘𝑊)
11 eqid 2736 . . . . . 6 (SubSp‘𝑈) = (SubSp‘𝑈)
128, 9, 10, 11sspims 30759 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
133, 7, 12syl2anc 584 . . . 4 (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
146simprd 495 . . . . 5 (𝜑𝑊 ∈ CBan)
15 eqid 2736 . . . . . 6 (BaseSet‘𝑊) = (BaseSet‘𝑊)
1615, 10cbncms 30885 . . . . 5 (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1714, 16syl 17 . . . 4 (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊)))
1813, 17eqeltrrd 2841 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)))
19 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
20 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
21 minveco.n . . . . 5 𝑁 = (normCV𝑈)
22 minveco.a . . . . 5 (𝜑𝐴𝑋)
23 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . 5 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . 5 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
2819, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27minvecolem3 30896 . . . 4 (𝜑𝐹 ∈ (Cau‘𝐷))
2919, 9imsmet 30711 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
301, 2, 293syl 18 . . . . . 6 (𝜑𝐷 ∈ (Met‘𝑋))
31 metxmet 24345 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3230, 31syl 17 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
33 causs 25333 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3432, 26, 33syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))))
3528, 34mpbid 232 . . 3 (𝜑𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))
36 eqid 2736 . . . 4 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3736cmetcau 25324 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
3818, 35, 37syl2anc 584 . 2 (𝜑𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
39 xmetres 24375 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
4036methaus 24534 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
4132, 39, 403syl 18 . . 3 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus)
42 lmfun 23390 . . 3 ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
43 funfvbrb 7070 . . 3 (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4441, 42, 433syl 18 . 2 (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4538, 44mpbid 232 1 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cin 3949   class class class wbr 5142  cmpt 5224   × cxp 5682  dom cdm 5684  ran crn 5685  cres 5686  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432  infcinf 9482  cr 11155  1c1 11157   + caddc 11159   < clt 11296  cle 11297   / cdiv 11921  cn 12267  2c2 12322  cexp 14103  ∞Metcxmet 21350  Metcmet 21351  MetOpencmopn 21355  𝑡clm 23235  Hauscha 23317  Cauccau 25288  CMetccmet 25289  NrmCVeccnv 30604  BaseSetcba 30606  𝑣 cnsb 30609  normCVcnmcv 30610  IndMetcims 30611  SubSpcss 30741  CPreHilOLDccphlo 30832  CBanccbn 30882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ico 13394  df-icc 13395  df-fl 13833  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-rest 17468  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-top 22901  df-topon 22918  df-bases 22954  df-ntr 23029  df-nei 23107  df-lm 23238  df-haus 23324  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-cfil 25290  df-cau 25291  df-cmet 25292  df-grpo 30513  df-gid 30514  df-ginv 30515  df-gdiv 30516  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-vs 30619  df-nmcv 30620  df-ims 30621  df-ssp 30742  df-ph 30833  df-cbn 30883
This theorem is referenced by:  minvecolem4b  30898  minvecolem4  30900
  Copyright terms: Public domain W3C validator