| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version | ||
| Description: Lemma for minveco 30813. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
| minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| Ref | Expression |
|---|---|
| minvecolem4a | ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 2 | phnv 30743 | . . . . . 6 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
| 4 | minveco.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 5 | elin 3930 | . . . . . . 7 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
| 6 | 4, 5 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
| 8 | minveco.y | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 9 | minveco.d | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 12 | 8, 9, 10, 11 | sspims 30668 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
| 13 | 3, 7, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
| 14 | 6 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ CBan) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 16 | 15, 10 | cbncms 30794 | . . . . 5 ⊢ (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
| 18 | 13, 17 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊))) |
| 19 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 20 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 21 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 22 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 23 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 24 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
| 25 | minveco.s | . . . . 5 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
| 26 | minveco.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
| 27 | minveco.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
| 28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 30805 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
| 29 | 19, 9 | imsmet 30620 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| 30 | 1, 2, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 31 | metxmet 24222 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 33 | causs 25198 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
| 34 | 32, 26, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 35 | 28, 34 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 36 | eqid 2729 | . . . 4 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
| 37 | 36 | cmetcau 25189 | . . 3 ⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 38 | 18, 35, 37 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 39 | xmetres 24252 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) | |
| 40 | 36 | methaus 24408 | . . . 4 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
| 41 | 32, 39, 40 | 3syl 18 | . . 3 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
| 42 | lmfun 23268 | . . 3 ⊢ ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
| 43 | funfvbrb 7023 | . . 3 ⊢ (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
| 44 | 41, 42, 43 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
| 45 | 38, 44 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ran crn 5639 ↾ cres 5640 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 infcinf 9392 ℝcr 11067 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 / cdiv 11835 ℕcn 12186 2c2 12241 ↑cexp 14026 ∞Metcxmet 21249 Metcmet 21250 MetOpencmopn 21254 ⇝𝑡clm 23113 Hauscha 23195 Cauccau 25153 CMetccmet 25154 NrmCVeccnv 30513 BaseSetcba 30515 −𝑣 cnsb 30518 normCVcnmcv 30519 IndMetcims 30520 SubSpcss 30650 CPreHilOLDccphlo 30741 CBanccbn 30791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-fl 13754 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-bases 22833 df-ntr 22907 df-nei 22985 df-lm 23116 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-cfil 25155 df-cau 25156 df-cmet 25157 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-ssp 30651 df-ph 30742 df-cbn 30792 |
| This theorem is referenced by: minvecolem4b 30807 minvecolem4 30809 |
| Copyright terms: Public domain | W3C validator |