| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version | ||
| Description: Lemma for minveco 30828. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
| minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| Ref | Expression |
|---|---|
| minvecolem4a | ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 2 | phnv 30758 | . . . . . 6 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
| 4 | minveco.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 5 | elin 3919 | . . . . . . 7 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
| 6 | 4, 5 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
| 8 | minveco.y | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 9 | minveco.d | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
| 12 | 8, 9, 10, 11 | sspims 30683 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
| 13 | 3, 7, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
| 14 | 6 | simprd 495 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ CBan) |
| 15 | eqid 2729 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 16 | 15, 10 | cbncms 30809 | . . . . 5 ⊢ (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
| 18 | 13, 17 | eqeltrrd 2829 | . . 3 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊))) |
| 19 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 20 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 21 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 22 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 23 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 24 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
| 25 | minveco.s | . . . . 5 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
| 26 | minveco.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
| 27 | minveco.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
| 28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 30820 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
| 29 | 19, 9 | imsmet 30635 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
| 30 | 1, 2, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 31 | metxmet 24220 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 33 | causs 25196 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
| 34 | 32, 26, 33 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 35 | 28, 34 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) |
| 36 | eqid 2729 | . . . 4 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
| 37 | 36 | cmetcau 25187 | . . 3 ⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 38 | 18, 35, 37 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
| 39 | xmetres 24250 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) | |
| 40 | 36 | methaus 24406 | . . . 4 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
| 41 | 32, 39, 40 | 3syl 18 | . . 3 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
| 42 | lmfun 23266 | . . 3 ⊢ ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
| 43 | funfvbrb 6985 | . . 3 ⊢ (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
| 44 | 41, 42, 43 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
| 45 | 38, 44 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 dom cdm 5619 ran crn 5620 ↾ cres 5621 Fun wfun 6476 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 infcinf 9331 ℝcr 11008 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 / cdiv 11777 ℕcn 12128 2c2 12183 ↑cexp 13968 ∞Metcxmet 21246 Metcmet 21247 MetOpencmopn 21251 ⇝𝑡clm 23111 Hauscha 23193 Cauccau 25151 CMetccmet 25152 NrmCVeccnv 30528 BaseSetcba 30530 −𝑣 cnsb 30533 normCVcnmcv 30534 IndMetcims 30535 SubSpcss 30665 CPreHilOLDccphlo 30756 CBanccbn 30806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-icc 13255 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-rest 17326 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-bases 22831 df-ntr 22905 df-nei 22983 df-lm 23114 df-haus 23200 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-ssp 30666 df-ph 30757 df-cbn 30807 |
| This theorem is referenced by: minvecolem4b 30822 minvecolem4 30824 |
| Copyright terms: Public domain | W3C validator |