![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version |
Description: Lemma for minveco 30814. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
Ref | Expression |
---|---|
minvecolem4a | ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
2 | phnv 30744 | . . . . . 6 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
4 | minveco.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
5 | elin 3962 | . . . . . . 7 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
7 | 6 | simpld 493 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
8 | minveco.y | . . . . . 6 ⊢ 𝑌 = (BaseSet‘𝑊) | |
9 | minveco.d | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
10 | eqid 2726 | . . . . . 6 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
11 | eqid 2726 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
12 | 8, 9, 10, 11 | sspims 30669 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
13 | 3, 7, 12 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌))) |
14 | 6 | simprd 494 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ CBan) |
15 | eqid 2726 | . . . . . 6 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
16 | 15, 10 | cbncms 30795 | . . . . 5 ⊢ (𝑊 ∈ CBan → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (IndMet‘𝑊) ∈ (CMet‘(BaseSet‘𝑊))) |
18 | 13, 17 | eqeltrrd 2827 | . . 3 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊))) |
19 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
20 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
21 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
22 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
23 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
24 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
25 | minveco.s | . . . . 5 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
26 | minveco.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
27 | minveco.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 30806 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
29 | 19, 9 | imsmet 30621 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
30 | 1, 2, 29 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
31 | metxmet 24328 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
33 | causs 25314 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:ℕ⟶𝑌) → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
34 | 32, 26, 33 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌))))) |
35 | 28, 34 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) |
36 | eqid 2726 | . . . 4 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
37 | 36 | cmetcau 25305 | . . 3 ⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘(BaseSet‘𝑊)) ∧ 𝐹 ∈ (Cau‘(𝐷 ↾ (𝑌 × 𝑌)))) → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
38 | 18, 35, 37 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
39 | xmetres 24358 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌))) | |
40 | 36 | methaus 24517 | . . . 4 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋 ∩ 𝑌)) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
41 | 32, 39, 40 | 3syl 18 | . . 3 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus) |
42 | lmfun 23373 | . . 3 ⊢ ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) | |
43 | funfvbrb 7056 | . . 3 ⊢ (Fun (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
44 | 41, 42, 43 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
45 | 38, 44 | mpbid 231 | 1 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∩ cin 3945 class class class wbr 5145 ↦ cmpt 5228 × cxp 5672 dom cdm 5674 ran crn 5675 ↾ cres 5676 Fun wfun 6540 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 infcinf 9477 ℝcr 11148 1c1 11150 + caddc 11152 < clt 11289 ≤ cle 11290 / cdiv 11912 ℕcn 12258 2c2 12313 ↑cexp 14075 ∞Metcxmet 21324 Metcmet 21325 MetOpencmopn 21329 ⇝𝑡clm 23218 Hauscha 23300 Cauccau 25269 CMetccmet 25270 NrmCVeccnv 30514 BaseSetcba 30516 −𝑣 cnsb 30519 normCVcnmcv 30520 IndMetcims 30521 SubSpcss 30651 CPreHilOLDccphlo 30742 CBanccbn 30792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 ax-mulf 11229 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-map 8849 df-pm 8850 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9478 df-inf 9479 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-n0 12519 df-z 12605 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ico 13378 df-icc 13379 df-fl 13806 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-rest 17432 df-topgen 17453 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-fbas 21336 df-fg 21337 df-top 22884 df-topon 22901 df-bases 22937 df-ntr 23012 df-nei 23090 df-lm 23221 df-haus 23307 df-fil 23838 df-fm 23930 df-flim 23931 df-flf 23932 df-cfil 25271 df-cau 25272 df-cmet 25273 df-grpo 30423 df-gid 30424 df-ginv 30425 df-gdiv 30426 df-ablo 30475 df-vc 30489 df-nv 30522 df-va 30525 df-ba 30526 df-sm 30527 df-0v 30528 df-vs 30529 df-nmcv 30530 df-ims 30531 df-ssp 30652 df-ph 30743 df-cbn 30793 |
This theorem is referenced by: minvecolem4b 30808 minvecolem4 30810 |
Copyright terms: Public domain | W3C validator |