![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4a | Structured version Visualization version GIF version |
Description: Lemma for minveco 30124. πΉ is convergent in the subspace topology on π. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | β’ π = (BaseSetβπ) |
minveco.m | β’ π = ( βπ£ βπ) |
minveco.n | β’ π = (normCVβπ) |
minveco.y | β’ π = (BaseSetβπ) |
minveco.u | β’ (π β π β CPreHilOLD) |
minveco.w | β’ (π β π β ((SubSpβπ) β© CBan)) |
minveco.a | β’ (π β π΄ β π) |
minveco.d | β’ π· = (IndMetβπ) |
minveco.j | β’ π½ = (MetOpenβπ·) |
minveco.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ππ¦))) |
minveco.s | β’ π = inf(π , β, < ) |
minveco.f | β’ (π β πΉ:ββΆπ) |
minveco.1 | β’ ((π β§ π β β) β ((π΄π·(πΉβπ))β2) β€ ((πβ2) + (1 / π))) |
Ref | Expression |
---|---|
minvecolem4a | β’ (π β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . . . 6 β’ (π β π β CPreHilOLD) | |
2 | phnv 30054 | . . . . . 6 β’ (π β CPreHilOLD β π β NrmCVec) | |
3 | 1, 2 | syl 17 | . . . . 5 β’ (π β π β NrmCVec) |
4 | minveco.w | . . . . . . 7 β’ (π β π β ((SubSpβπ) β© CBan)) | |
5 | elin 3963 | . . . . . . 7 β’ (π β ((SubSpβπ) β© CBan) β (π β (SubSpβπ) β§ π β CBan)) | |
6 | 4, 5 | sylib 217 | . . . . . 6 β’ (π β (π β (SubSpβπ) β§ π β CBan)) |
7 | 6 | simpld 495 | . . . . 5 β’ (π β π β (SubSpβπ)) |
8 | minveco.y | . . . . . 6 β’ π = (BaseSetβπ) | |
9 | minveco.d | . . . . . 6 β’ π· = (IndMetβπ) | |
10 | eqid 2732 | . . . . . 6 β’ (IndMetβπ) = (IndMetβπ) | |
11 | eqid 2732 | . . . . . 6 β’ (SubSpβπ) = (SubSpβπ) | |
12 | 8, 9, 10, 11 | sspims 29979 | . . . . 5 β’ ((π β NrmCVec β§ π β (SubSpβπ)) β (IndMetβπ) = (π· βΎ (π Γ π))) |
13 | 3, 7, 12 | syl2anc 584 | . . . 4 β’ (π β (IndMetβπ) = (π· βΎ (π Γ π))) |
14 | 6 | simprd 496 | . . . . 5 β’ (π β π β CBan) |
15 | eqid 2732 | . . . . . 6 β’ (BaseSetβπ) = (BaseSetβπ) | |
16 | 15, 10 | cbncms 30105 | . . . . 5 β’ (π β CBan β (IndMetβπ) β (CMetβ(BaseSetβπ))) |
17 | 14, 16 | syl 17 | . . . 4 β’ (π β (IndMetβπ) β (CMetβ(BaseSetβπ))) |
18 | 13, 17 | eqeltrrd 2834 | . . 3 β’ (π β (π· βΎ (π Γ π)) β (CMetβ(BaseSetβπ))) |
19 | minveco.x | . . . . 5 β’ π = (BaseSetβπ) | |
20 | minveco.m | . . . . 5 β’ π = ( βπ£ βπ) | |
21 | minveco.n | . . . . 5 β’ π = (normCVβπ) | |
22 | minveco.a | . . . . 5 β’ (π β π΄ β π) | |
23 | minveco.j | . . . . 5 β’ π½ = (MetOpenβπ·) | |
24 | minveco.r | . . . . 5 β’ π = ran (π¦ β π β¦ (πβ(π΄ππ¦))) | |
25 | minveco.s | . . . . 5 β’ π = inf(π , β, < ) | |
26 | minveco.f | . . . . 5 β’ (π β πΉ:ββΆπ) | |
27 | minveco.1 | . . . . 5 β’ ((π β§ π β β) β ((π΄π·(πΉβπ))β2) β€ ((πβ2) + (1 / π))) | |
28 | 19, 20, 21, 8, 1, 4, 22, 9, 23, 24, 25, 26, 27 | minvecolem3 30116 | . . . 4 β’ (π β πΉ β (Cauβπ·)) |
29 | 19, 9 | imsmet 29931 | . . . . . . 7 β’ (π β NrmCVec β π· β (Metβπ)) |
30 | 1, 2, 29 | 3syl 18 | . . . . . 6 β’ (π β π· β (Metβπ)) |
31 | metxmet 23831 | . . . . . 6 β’ (π· β (Metβπ) β π· β (βMetβπ)) | |
32 | 30, 31 | syl 17 | . . . . 5 β’ (π β π· β (βMetβπ)) |
33 | causs 24806 | . . . . 5 β’ ((π· β (βMetβπ) β§ πΉ:ββΆπ) β (πΉ β (Cauβπ·) β πΉ β (Cauβ(π· βΎ (π Γ π))))) | |
34 | 32, 26, 33 | syl2anc 584 | . . . 4 β’ (π β (πΉ β (Cauβπ·) β πΉ β (Cauβ(π· βΎ (π Γ π))))) |
35 | 28, 34 | mpbid 231 | . . 3 β’ (π β πΉ β (Cauβ(π· βΎ (π Γ π)))) |
36 | eqid 2732 | . . . 4 β’ (MetOpenβ(π· βΎ (π Γ π))) = (MetOpenβ(π· βΎ (π Γ π))) | |
37 | 36 | cmetcau 24797 | . . 3 β’ (((π· βΎ (π Γ π)) β (CMetβ(BaseSetβπ)) β§ πΉ β (Cauβ(π· βΎ (π Γ π)))) β πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π))))) |
38 | 18, 35, 37 | syl2anc 584 | . 2 β’ (π β πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π))))) |
39 | xmetres 23861 | . . . 4 β’ (π· β (βMetβπ) β (π· βΎ (π Γ π)) β (βMetβ(π β© π))) | |
40 | 36 | methaus 24020 | . . . 4 β’ ((π· βΎ (π Γ π)) β (βMetβ(π β© π)) β (MetOpenβ(π· βΎ (π Γ π))) β Haus) |
41 | 32, 39, 40 | 3syl 18 | . . 3 β’ (π β (MetOpenβ(π· βΎ (π Γ π))) β Haus) |
42 | lmfun 22876 | . . 3 β’ ((MetOpenβ(π· βΎ (π Γ π))) β Haus β Fun (βπ‘β(MetOpenβ(π· βΎ (π Γ π))))) | |
43 | funfvbrb 7049 | . . 3 β’ (Fun (βπ‘β(MetOpenβ(π· βΎ (π Γ π)))) β (πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π)))) β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ))) | |
44 | 41, 42, 43 | 3syl 18 | . 2 β’ (π β (πΉ β dom (βπ‘β(MetOpenβ(π· βΎ (π Γ π)))) β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ))) |
45 | 38, 44 | mpbid 231 | 1 β’ (π β πΉ(βπ‘β(MetOpenβ(π· βΎ (π Γ π))))((βπ‘β(MetOpenβ(π· βΎ (π Γ π))))βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 class class class wbr 5147 β¦ cmpt 5230 Γ cxp 5673 dom cdm 5675 ran crn 5676 βΎ cres 5677 Fun wfun 6534 βΆwf 6536 βcfv 6540 (class class class)co 7405 infcinf 9432 βcr 11105 1c1 11107 + caddc 11109 < clt 11244 β€ cle 11245 / cdiv 11867 βcn 12208 2c2 12263 βcexp 14023 βMetcxmet 20921 Metcmet 20922 MetOpencmopn 20926 βπ‘clm 22721 Hauscha 22803 Cauccau 24761 CMetccmet 24762 NrmCVeccnv 29824 BaseSetcba 29826 βπ£ cnsb 29829 normCVcnmcv 29830 IndMetcims 29831 SubSpcss 29961 CPreHilOLDccphlo 30052 CBanccbn 30102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ico 13326 df-icc 13327 df-fl 13753 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-rest 17364 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-top 22387 df-topon 22404 df-bases 22440 df-ntr 22515 df-nei 22593 df-lm 22724 df-haus 22810 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-cfil 24763 df-cau 24764 df-cmet 24765 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-ims 29841 df-ssp 29962 df-ph 30053 df-cbn 30103 |
This theorem is referenced by: minvecolem4b 30118 minvecolem4 30120 |
Copyright terms: Public domain | W3C validator |