MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjors Structured version   Visualization version   GIF version

Theorem disjors 5055
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjors (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐴   𝐵,𝑖,𝑗
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjors
StepHypRef Expression
1 nfcv 2907 . . 3 𝑖𝐵
2 nfcsb1v 3857 . . 3 𝑥𝑖 / 𝑥𝐵
3 csbeq1a 3846 . . 3 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
41, 2, 3cbvdisj 5049 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥𝐵)
5 csbeq1 3835 . . 3 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
65disjor 5054 . 2 (Disj 𝑖𝐴 𝑖 / 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
74, 6bitri 274 1 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1539  wral 3064  csb 3832  cin 3886  c0 4256  Disj wdisj 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rmo 3071  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-in 3894  df-nul 4257  df-disj 5040
This theorem is referenced by:  disji2  5056  disjprgw  5069  disjprg  5070  disjxiun  5071  disjxun  5072  iundisj2  24713  disji2f  30916  disjpreima  30923  disjxpin  30927  iundisj2f  30929  disjunsn  30933  iundisj2fi  31118  disjxp1  42617  disjinfi  42731
  Copyright terms: Public domain W3C validator