MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjors Structured version   Visualization version   GIF version

Theorem disjors 5090
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjors (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Distinct variable groups:   𝑖,𝑗,𝑥,𝐴   𝐵,𝑖,𝑗
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjors
StepHypRef Expression
1 nfcv 2891 . . 3 𝑖𝐵
2 nfcsb1v 3886 . . 3 𝑥𝑖 / 𝑥𝐵
3 csbeq1a 3876 . . 3 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
41, 2, 3cbvdisj 5084 . 2 (Disj 𝑥𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑥𝐵)
5 csbeq1 3865 . . 3 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
65disjor 5089 . 2 (Disj 𝑖𝐴 𝑖 / 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
74, 6bitri 275 1 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1540  wral 3044  csb 3862  cin 3913  c0 4296  Disj wdisj 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rmo 3354  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-in 3921  df-nul 4297  df-disj 5075
This theorem is referenced by:  disji2  5091  disjprg  5103  disjxiun  5104  disjxun  5105  iundisj2  25450  disji2f  32506  disjpreima  32513  disjxpin  32517  iundisj2f  32519  disjunsn  32523  iundisj2fi  32720  disjxp1  45063  disjinfi  45186
  Copyright terms: Public domain W3C validator