| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjors | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjors | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑖𝐵 | |
| 2 | nfcsb1v 3869 | . . 3 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
| 3 | csbeq1a 3859 | . . 3 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
| 4 | 1, 2, 3 | cbvdisj 5063 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵) |
| 5 | csbeq1 3848 | . . 3 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
| 6 | 5 | disjor 5068 | . 2 ⊢ (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| 7 | 4, 6 | bitri 275 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∀wral 3047 ⦋csb 3845 ∩ cin 3896 ∅c0 4278 Disj wdisj 5053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rmo 3346 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-in 3904 df-nul 4279 df-disj 5054 |
| This theorem is referenced by: disji2 5070 disjprg 5082 disjxiun 5083 disjxun 5084 iundisj2 25472 disji2f 32549 disjpreima 32556 disjxpin 32560 iundisj2f 32562 disjunsn 32566 iundisj2fi 32771 disjxp1 45106 disjinfi 45229 |
| Copyright terms: Public domain | W3C validator |