![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjors | Structured version Visualization version GIF version |
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjors | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑖𝐵 | |
2 | nfcsb1v 3933 | . . 3 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
3 | csbeq1a 3922 | . . 3 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
4 | 1, 2, 3 | cbvdisj 5125 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵) |
5 | csbeq1 3911 | . . 3 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
6 | 5 | disjor 5130 | . 2 ⊢ (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
7 | 4, 6 | bitri 275 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∀wral 3059 ⦋csb 3908 ∩ cin 3962 ∅c0 4339 Disj wdisj 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rmo 3378 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-in 3970 df-nul 4340 df-disj 5116 |
This theorem is referenced by: disji2 5132 disjprg 5144 disjxiun 5145 disjxun 5146 iundisj2 25598 disji2f 32597 disjpreima 32604 disjxpin 32608 iundisj2f 32610 disjunsn 32614 iundisj2fi 32805 disjxp1 45009 disjinfi 45135 |
Copyright terms: Public domain | W3C validator |