Step | Hyp | Ref
| Expression |
1 | | disjf1.xph |
. . . . . . 7
⊢
Ⅎ𝑥𝜑 |
2 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 1, 2 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
4 | | nfcsb1v 3857 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
5 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑥𝑉 |
6 | 4, 5 | nfel 2921 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉 |
7 | 3, 6 | nfim 1899 |
. . . . 5
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉) |
8 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
9 | 8 | anbi2d 629 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
10 | | csbeq1a 3846 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
11 | 10 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑉 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉)) |
12 | 9, 11 | imbi12d 345 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉))) |
13 | | disjf1.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
14 | 7, 12, 13 | chvarfv 2233 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉) |
15 | 14 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉) |
16 | | inidm 4152 |
. . . . . . . . 9
⊢
(⦋𝑦 /
𝑥⦌𝐵 ∩ ⦋𝑦 / 𝑥⦌𝐵) = ⦋𝑦 / 𝑥⦌𝐵 |
17 | 16 | eqcomi 2747 |
. . . . . . . 8
⊢
⦋𝑦 /
𝑥⦌𝐵 = (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑦 / 𝑥⦌𝐵) |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → ⦋𝑦 / 𝑥⦌𝐵 = (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑦 / 𝑥⦌𝐵)) |
19 | | ineq2 4140 |
. . . . . . . 8
⊢
(⦋𝑦 /
𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵)) |
20 | 19 | ad2antlr 724 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑦 / 𝑥⦌𝐵) = (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵)) |
21 | | disjf1.dj |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
22 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤𝐵 |
23 | | nfcsb1v 3857 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 |
24 | | csbeq1a 3846 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) |
25 | 22, 23, 24 | cbvdisj 5049 |
. . . . . . . . . 10
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ Disj 𝑤 ∈ 𝐴 ⦋𝑤 / 𝑥⦌𝐵) |
26 | 21, 25 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → Disj 𝑤 ∈ 𝐴 ⦋𝑤 / 𝑥⦌𝐵) |
27 | 26 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → Disj 𝑤 ∈ 𝐴 ⦋𝑤 / 𝑥⦌𝐵) |
28 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
29 | | neqne 2951 |
. . . . . . . . 9
⊢ (¬
𝑦 = 𝑧 → 𝑦 ≠ 𝑧) |
30 | 29 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 ≠ 𝑧) |
31 | | csbeq1 3835 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ⦋𝑤 / 𝑥⦌𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
32 | | csbeq1 3835 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
33 | 31, 32 | disji2 5056 |
. . . . . . . 8
⊢
((Disj 𝑤
∈ 𝐴
⦋𝑤 / 𝑥⦌𝐵 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ≠ 𝑧) → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) |
34 | 27, 28, 30, 33 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) |
35 | 18, 20, 34 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → ⦋𝑦 / 𝑥⦌𝐵 = ∅) |
36 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∅ |
37 | 4, 36 | nfne 3045 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≠ ∅ |
38 | 3, 37 | nfim 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≠ ∅) |
39 | 10 | neeq1d 3003 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐵 ≠ ∅ ↔ ⦋𝑦 / 𝑥⦌𝐵 ≠ ∅)) |
40 | 9, 39 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≠ ∅))) |
41 | | disjf1.n0 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) |
42 | 38, 40, 41 | chvarfv 2233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≠ ∅) |
43 | 42 | adantrr 714 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ⦋𝑦 / 𝑥⦌𝐵 ≠ ∅) |
44 | 43 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → ⦋𝑦 / 𝑥⦌𝐵 ≠ ∅) |
45 | 44 | neneqd 2948 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) ∧ ¬ 𝑦 = 𝑧) → ¬ ⦋𝑦 / 𝑥⦌𝐵 = ∅) |
46 | 35, 45 | condan 815 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) → 𝑦 = 𝑧) |
47 | 46 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 → 𝑦 = 𝑧)) |
48 | 47 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 → 𝑦 = 𝑧)) |
49 | 15, 48 | jca 512 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 → 𝑦 = 𝑧))) |
50 | | disjf1.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
51 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑦𝐵 |
52 | 51, 4, 10 | cbvmpt 5185 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
53 | 50, 52 | eqtri 2766 |
. . 3
⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
54 | | csbeq1 3835 |
. . 3
⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
55 | 53, 54 | f1mpt 7134 |
. 2
⊢ (𝐹:𝐴–1-1→𝑉 ↔ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵 → 𝑦 = 𝑧))) |
56 | 49, 55 | sylibr 233 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1→𝑉) |