Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjf1 Structured version   Visualization version   GIF version

Theorem disjf1 41807
Description: A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjf1.xph 𝑥𝜑
disjf1.f 𝐹 = (𝑥𝐴𝐵)
disjf1.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjf1.n0 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
disjf1.dj (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjf1 (𝜑𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem disjf1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjf1.xph . . . . . . 7 𝑥𝜑
2 nfv 1915 . . . . . . 7 𝑥 𝑦𝐴
31, 2nfan 1900 . . . . . 6 𝑥(𝜑𝑦𝐴)
4 nfcsb1v 3852 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 nfcv 2955 . . . . . . 7 𝑥𝑉
64, 5nfel 2969 . . . . . 6 𝑥𝑦 / 𝑥𝐵𝑉
73, 6nfim 1897 . . . . 5 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)
8 eleq1w 2872 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98anbi2d 631 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
10 csbeq1a 3842 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1110eleq1d 2874 . . . . . 6 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
129, 11imbi12d 348 . . . . 5 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)))
13 disjf1.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
147, 12, 13chvarfv 2240 . . . 4 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)
1514ralrimiva 3149 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉)
16 inidm 4145 . . . . . . . . 9 (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = 𝑦 / 𝑥𝐵
1716eqcomi 2807 . . . . . . . 8 𝑦 / 𝑥𝐵 = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵)
1817a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵))
19 ineq2 4133 . . . . . . . 8 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵))
2019ad2antlr 726 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵))
21 disjf1.dj . . . . . . . . . 10 (𝜑Disj 𝑥𝐴 𝐵)
22 nfcv 2955 . . . . . . . . . . 11 𝑤𝐵
23 nfcsb1v 3852 . . . . . . . . . . 11 𝑥𝑤 / 𝑥𝐵
24 csbeq1a 3842 . . . . . . . . . . 11 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
2522, 23, 24cbvdisj 5005 . . . . . . . . . 10 (Disj 𝑥𝐴 𝐵Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
2621, 25sylib 221 . . . . . . . . 9 (𝜑Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
2726ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
28 simpllr 775 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦𝐴𝑧𝐴))
29 neqne 2995 . . . . . . . . 9 𝑦 = 𝑧𝑦𝑧)
3029adantl 485 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦𝑧)
31 csbeq1 3831 . . . . . . . . 9 (𝑤 = 𝑦𝑤 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
32 csbeq1 3831 . . . . . . . . 9 (𝑤 = 𝑧𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3331, 32disji2 5012 . . . . . . . 8 ((Disj 𝑤𝐴 𝑤 / 𝑥𝐵 ∧ (𝑦𝐴𝑧𝐴) ∧ 𝑦𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
3427, 28, 30, 33syl3anc 1368 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
3518, 20, 343eqtrd 2837 . . . . . 6 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 = ∅)
36 nfcv 2955 . . . . . . . . . . . 12 𝑥
374, 36nfne 3087 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵 ≠ ∅
383, 37nfim 1897 . . . . . . . . . 10 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)
3910neeq1d 3046 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐵 ≠ ∅ ↔ 𝑦 / 𝑥𝐵 ≠ ∅))
409, 39imbi12d 348 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ≠ ∅) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)))
41 disjf1.n0 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
4238, 40, 41chvarfv 2240 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)
4342adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 / 𝑥𝐵 ≠ ∅)
4443ad2antrr 725 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 ≠ ∅)
4544neneqd 2992 . . . . . 6 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → ¬ 𝑦 / 𝑥𝐵 = ∅)
4635, 45condan 817 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) → 𝑦 = 𝑧)
4746ex 416 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧))
4847ralrimivva 3156 . . 3 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧))
4915, 48jca 515 . 2 (𝜑 → (∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧)))
50 disjf1.f . . . 4 𝐹 = (𝑥𝐴𝐵)
51 nfcv 2955 . . . . 5 𝑦𝐵
5251, 4, 10cbvmpt 5131 . . . 4 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
5350, 52eqtri 2821 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
54 csbeq1 3831 . . 3 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
5553, 54f1mpt 6997 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧)))
5649, 55sylibr 237 1 (𝜑𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wne 2987  wral 3106  csb 3828  cin 3880  c0 4243  Disj wdisj 4995  cmpt 5110  1-1wf1 6321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fv 6332
This theorem is referenced by:  disjf1o  41816  meadjiunlem  43102
  Copyright terms: Public domain W3C validator