Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjf1 Structured version   Visualization version   GIF version

Theorem disjf1 42720
Description: A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjf1.xph 𝑥𝜑
disjf1.f 𝐹 = (𝑥𝐴𝐵)
disjf1.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjf1.n0 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
disjf1.dj (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjf1 (𝜑𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem disjf1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjf1.xph . . . . . . 7 𝑥𝜑
2 nfv 1917 . . . . . . 7 𝑥 𝑦𝐴
31, 2nfan 1902 . . . . . 6 𝑥(𝜑𝑦𝐴)
4 nfcsb1v 3857 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 nfcv 2907 . . . . . . 7 𝑥𝑉
64, 5nfel 2921 . . . . . 6 𝑥𝑦 / 𝑥𝐵𝑉
73, 6nfim 1899 . . . . 5 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)
8 eleq1w 2821 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98anbi2d 629 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
10 csbeq1a 3846 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1110eleq1d 2823 . . . . . 6 (𝑥 = 𝑦 → (𝐵𝑉𝑦 / 𝑥𝐵𝑉))
129, 11imbi12d 345 . . . . 5 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵𝑉) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)))
13 disjf1.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
147, 12, 13chvarfv 2233 . . . 4 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝑉)
1514ralrimiva 3103 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉)
16 inidm 4152 . . . . . . . . 9 (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = 𝑦 / 𝑥𝐵
1716eqcomi 2747 . . . . . . . 8 𝑦 / 𝑥𝐵 = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵)
1817a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵))
19 ineq2 4140 . . . . . . . 8 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵))
2019ad2antlr 724 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵) = (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵))
21 disjf1.dj . . . . . . . . . 10 (𝜑Disj 𝑥𝐴 𝐵)
22 nfcv 2907 . . . . . . . . . . 11 𝑤𝐵
23 nfcsb1v 3857 . . . . . . . . . . 11 𝑥𝑤 / 𝑥𝐵
24 csbeq1a 3846 . . . . . . . . . . 11 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
2522, 23, 24cbvdisj 5049 . . . . . . . . . 10 (Disj 𝑥𝐴 𝐵Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
2621, 25sylib 217 . . . . . . . . 9 (𝜑Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
2726ad3antrrr 727 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → Disj 𝑤𝐴 𝑤 / 𝑥𝐵)
28 simpllr 773 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦𝐴𝑧𝐴))
29 neqne 2951 . . . . . . . . 9 𝑦 = 𝑧𝑦𝑧)
3029adantl 482 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦𝑧)
31 csbeq1 3835 . . . . . . . . 9 (𝑤 = 𝑦𝑤 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
32 csbeq1 3835 . . . . . . . . 9 (𝑤 = 𝑧𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3331, 32disji2 5056 . . . . . . . 8 ((Disj 𝑤𝐴 𝑤 / 𝑥𝐵 ∧ (𝑦𝐴𝑧𝐴) ∧ 𝑦𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
3427, 28, 30, 33syl3anc 1370 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
3518, 20, 343eqtrd 2782 . . . . . 6 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 = ∅)
36 nfcv 2907 . . . . . . . . . . . 12 𝑥
374, 36nfne 3045 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵 ≠ ∅
383, 37nfim 1899 . . . . . . . . . 10 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)
3910neeq1d 3003 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐵 ≠ ∅ ↔ 𝑦 / 𝑥𝐵 ≠ ∅))
409, 39imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ≠ ∅) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)))
41 disjf1.n0 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
4238, 40, 41chvarfv 2233 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ≠ ∅)
4342adantrr 714 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 / 𝑥𝐵 ≠ ∅)
4443ad2antrr 723 . . . . . . 7 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → 𝑦 / 𝑥𝐵 ≠ ∅)
4544neneqd 2948 . . . . . 6 ((((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) ∧ ¬ 𝑦 = 𝑧) → ¬ 𝑦 / 𝑥𝐵 = ∅)
4635, 45condan 815 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵) → 𝑦 = 𝑧)
4746ex 413 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧))
4847ralrimivva 3123 . . 3 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧))
4915, 48jca 512 . 2 (𝜑 → (∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧)))
50 disjf1.f . . . 4 𝐹 = (𝑥𝐴𝐵)
51 nfcv 2907 . . . . 5 𝑦𝐵
5251, 4, 10cbvmpt 5185 . . . 4 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
5350, 52eqtri 2766 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
54 csbeq1 3835 . . 3 (𝑦 = 𝑧𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
5553, 54f1mpt 7134 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 𝑦 / 𝑥𝐵𝑉 ∧ ∀𝑦𝐴𝑧𝐴 (𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵𝑦 = 𝑧)))
5649, 55sylibr 233 1 (𝜑𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  csb 3832  cin 3886  c0 4256  Disj wdisj 5039  cmpt 5157  1-1wf1 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441
This theorem is referenced by:  disjf1o  42729  meadjiunlem  44003
  Copyright terms: Public domain W3C validator