Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmeas Structured version   Visualization version   GIF version

Theorem omsmeas 34336
Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
omsmeas.m 𝑀 = (toOMeas‘𝑅)
omsmeas.s 𝑆 = (toCaraSiga‘𝑀)
omsmeas.o (𝜑𝑄𝑉)
omsmeas.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmeas.d (𝜑 → ∅ ∈ dom 𝑅)
omsmeas.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
omsmeas (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))

Proof of Theorem omsmeas
Dummy variables 𝑒 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmeas.o . . . . . 6 (𝜑𝑄𝑉)
2 omsmeas.r . . . . . 6 (𝜑𝑅:𝑄⟶(0[,]+∞))
3 omsf 34309 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
5 omsmeas.m . . . . . . 7 𝑀 = (toOMeas‘𝑅)
65a1i 11 . . . . . 6 (𝜑𝑀 = (toOMeas‘𝑅))
72fdmd 6661 . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝑄)
87eqcomd 2737 . . . . . . . 8 (𝜑𝑄 = dom 𝑅)
98unieqd 4869 . . . . . . 7 (𝜑 𝑄 = dom 𝑅)
109pweqd 4564 . . . . . 6 (𝜑 → 𝒫 𝑄 = 𝒫 dom 𝑅)
116, 10feq12d 6639 . . . . 5 (𝜑 → (𝑀:𝒫 𝑄⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞)))
124, 11mpbird 257 . . . 4 (𝜑𝑀:𝒫 𝑄⟶(0[,]+∞))
13 omsmeas.s . . . . 5 𝑆 = (toCaraSiga‘𝑀)
141uniexd 7675 . . . . . 6 (𝜑 𝑄 ∈ V)
1514, 12carsgcl 34317 . . . . 5 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑄)
1613, 15eqsstrid 3968 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑄)
1712, 16fssresd 6690 . . 3 (𝜑 → (𝑀𝑆):𝑆⟶(0[,]+∞))
18 omsmeas.d . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑅)
19 omsmeas.0 . . . . . . . 8 (𝜑 → (𝑅‘∅) = 0)
205, 1, 2, 18, 19oms0 34310 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
2114, 12, 200elcarsg 34320 . . . . . 6 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
2221, 13eleqtrrdi 2842 . . . . 5 (𝜑 → ∅ ∈ 𝑆)
23 fvres 6841 . . . . 5 (∅ ∈ 𝑆 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2422, 23syl 17 . . . 4 (𝜑 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2524, 20eqtrd 2766 . . 3 (𝜑 → ((𝑀𝑆)‘∅) = 0)
26 nfcv 2894 . . . . . . . 8 𝑔𝑓
27 nfcv 2894 . . . . . . . 8 𝑓𝑔
28 id 22 . . . . . . . 8 (𝑓 = 𝑔𝑓 = 𝑔)
2926, 27, 28cbvdisj 5066 . . . . . . 7 (Disj 𝑓𝑒 𝑓Disj 𝑔𝑒 𝑔)
3029anbi2i 623 . . . . . 6 ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) ↔ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
311ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄𝑉)
322ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑅:𝑄⟶(0[,]+∞))
33 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ 𝒫 𝑆)
3433elpwid 4556 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
3516ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑆 ⊆ 𝒫 𝑄)
3634, 35sstrd 3940 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ 𝒫 𝑄)
3736sselda 3929 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 ∈ 𝒫 𝑄)
3837elpwid 4556 . . . . . . . . . 10 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 𝑄)
39 simprl 770 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ≼ ω)
405, 31, 32, 38, 39omssubadd 34313 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀 𝑓𝑒 𝑓) ≤ Σ*𝑓𝑒(𝑀𝑓))
4114ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄 ∈ V)
4212ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
4320ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀‘∅) = 0)
44 uniiun 5005 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦𝑥 𝑦
4544fveq2i 6825 . . . . . . . . . . . . . . 15 (𝑀 𝑥) = (𝑀 𝑦𝑥 𝑦)
4613ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑄𝑉)
4723ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
48 simpl3 1194 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑥 ⊆ 𝒫 𝑄)
49 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦𝑥)
5048, 49sseldd 3930 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 ∈ 𝒫 𝑄)
5150elpwid 4556 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 𝑄)
52 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑥 ≼ ω)
535, 46, 47, 51, 52omssubadd 34313 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑦𝑥 𝑦) ≤ Σ*𝑦𝑥(𝑀𝑦))
5445, 53eqbrtrid 5124 . . . . . . . . . . . . . 14 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
55543adant1r 1178 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
56553adant1r 1178 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5713ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑄𝑉)
5823ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
59 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑥𝑦)
60 elpwi 4554 . . . . . . . . . . . . . . . 16 (𝑦 ∈ 𝒫 𝑄𝑦 𝑄)
61603ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑦 𝑄)
625, 57, 58, 59, 61omsmon 34311 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
63623adant1r 1178 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
64633adant1r 1178 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
65 elpwi 4554 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆𝑒𝑆)
6665ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
6766, 13sseqtrdi 3970 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ (toCaraSiga‘𝑀))
6841, 42, 43, 56, 64, 39, 67carsgclctun 34334 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ (toCaraSiga‘𝑀))
6968, 13eleqtrrdi 2842 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
70 fvres 6841 . . . . . . . . . . 11 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
71 uniiun 5005 . . . . . . . . . . . 12 𝑒 = 𝑓𝑒 𝑓
7271fveq2i 6825 . . . . . . . . . . 11 (𝑀 𝑒) = (𝑀 𝑓𝑒 𝑓)
7370, 72eqtrdi 2782 . . . . . . . . . 10 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
7469, 73syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
75 nfv 1915 . . . . . . . . . 10 𝑓((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
7666sselda 3929 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓𝑆)
77 fvres 6841 . . . . . . . . . . . 12 (𝑓𝑆 → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7876, 77syl 17 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7978ralrimiva 3124 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
8075, 79esumeq2d 34050 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) = Σ*𝑓𝑒(𝑀𝑓))
8140, 74, 803brtr4d 5121 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
82 snex 5372 . . . . . . . . . . . . 13 {∅} ∈ V
8382a1i 11 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → {∅} ∈ V)
8442adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
8584, 37ffvelcdmd 7018 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑓) ∈ (0[,]+∞))
86 elsni 4590 . . . . . . . . . . . . . 14 (𝑓 ∈ {∅} → 𝑓 = ∅)
8786fveq2d 6826 . . . . . . . . . . . . 13 (𝑓 ∈ {∅} → (𝑀𝑓) = (𝑀‘∅))
8887, 43sylan9eqr 2788 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓 ∈ {∅}) → (𝑀𝑓) = 0)
8933, 83, 85, 88esumpad2 34069 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) = Σ*𝑓𝑒(𝑀𝑓))
90 neldifsnd 4742 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ¬ ∅ ∈ (𝑒 ∖ {∅}))
91 difss 4083 . . . . . . . . . . . . . 14 (𝑒 ∖ {∅}) ⊆ 𝑒
92 ssdomg 8922 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆 → ((𝑒 ∖ {∅}) ⊆ 𝑒 → (𝑒 ∖ {∅}) ≼ 𝑒))
9333, 91, 92mpisyl 21 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ 𝑒)
94 domtr 8929 . . . . . . . . . . . . 13 (((𝑒 ∖ {∅}) ≼ 𝑒𝑒 ≼ ω) → (𝑒 ∖ {∅}) ≼ ω)
9593, 39, 94syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ ω)
9667ssdifssd 4094 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ⊆ (toCaraSiga‘𝑀))
97 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑔𝑒 𝑔)
98 nfcv 2894 . . . . . . . . . . . . . . 15 𝑦𝑔
99 nfcv 2894 . . . . . . . . . . . . . . 15 𝑔𝑦
100 id 22 . . . . . . . . . . . . . . 15 (𝑔 = 𝑦𝑔 = 𝑦)
10198, 99, 100cbvdisj 5066 . . . . . . . . . . . . . 14 (Disj 𝑔𝑒 𝑔Disj 𝑦𝑒 𝑦)
10297, 101sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦𝑒 𝑦)
103 disjss1 5062 . . . . . . . . . . . . 13 ((𝑒 ∖ {∅}) ⊆ 𝑒 → (Disj 𝑦𝑒 𝑦Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦))
10491, 102, 103mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦)
10541, 42, 43, 56, 90, 95, 96, 104, 64carsggect 34331 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
10689, 105eqbrtrrd 5113 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
107 unidif0 5296 . . . . . . . . . . 11 (𝑒 ∖ {∅}) = 𝑒
108107fveq2i 6825 . . . . . . . . . 10 (𝑀 (𝑒 ∖ {∅})) = (𝑀 𝑒)
109106, 108breqtrdi 5130 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 𝑒))
11069, 70syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
111109, 80, 1103brtr4d 5121 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))
11281, 111jca 511 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒)))
113 iccssxr 13330 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
11417ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀𝑆):𝑆⟶(0[,]+∞))
115114, 69ffvelcdmd 7018 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ (0[,]+∞))
116113, 115sselid 3927 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ ℝ*)
117114adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑆):𝑆⟶(0[,]+∞))
118117, 76ffvelcdmd 7018 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
119118ralrimiva 3124 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
120 nfcv 2894 . . . . . . . . . . 11 𝑓𝑒
121120esumcl 34043 . . . . . . . . . 10 ((𝑒 ∈ 𝒫 𝑆 ∧ ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
12233, 119, 121syl2anc 584 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
123113, 122sselid 3927 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*)
124 xrletri3 13053 . . . . . . . 8 ((((𝑀𝑆)‘ 𝑒) ∈ ℝ* ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
125116, 123, 124syl2anc 584 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
126112, 125mpbird 257 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
12730, 126sylan2b 594 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
128127ex 412 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑆) → ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
129128ralrimiva 3124 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
13017, 25, 1293jca 1128 . 2 (𝜑 → ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))))
13114, 12, 20, 54, 62carsgsiga 34335 . . . 4 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘ 𝑄))
13213, 131eqeltrid 2835 . . 3 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑄))
133 elrnsiga 34139 . . 3 (𝑆 ∈ (sigAlgebra‘ 𝑄) → 𝑆 ran sigAlgebra)
134 ismeas 34212 . . 3 (𝑆 ran sigAlgebra → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
135132, 133, 1343syl 18 . 2 (𝜑 → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
136130, 135mpbird 257 1 (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   cuni 4856   ciun 4939  Disj wdisj 5056   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  cdom 8867  0cc0 11006  +∞cpnf 11143  *cxr 11145  cle 11147  [,]cicc 13248  Σ*cesum 34040  sigAlgebracsiga 34121  measurescmeas 34208  toOMeascoms 34304  toCaraSigaccarsg 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-cc 10326  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9657  df-rank 9658  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18547  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-abv 20724  df-lmod 20795  df-scaf 20796  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-tmd 23987  df-tgp 23988  df-tsms 24042  df-trg 24075  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-nrg 24500  df-nlm 24501  df-ii 24797  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-esum 34041  df-siga 34122  df-meas 34209  df-oms 34305  df-carsg 34315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator