Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmeas Structured version   Visualization version   GIF version

Theorem omsmeas 31469
Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
omsmeas.m 𝑀 = (toOMeas‘𝑅)
omsmeas.s 𝑆 = (toCaraSiga‘𝑀)
omsmeas.o (𝜑𝑄𝑉)
omsmeas.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmeas.d (𝜑 → ∅ ∈ dom 𝑅)
omsmeas.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
omsmeas (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))

Proof of Theorem omsmeas
Dummy variables 𝑒 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmeas.o . . . . . 6 (𝜑𝑄𝑉)
2 omsmeas.r . . . . . 6 (𝜑𝑅:𝑄⟶(0[,]+∞))
3 omsf 31442 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
5 omsmeas.m . . . . . . 7 𝑀 = (toOMeas‘𝑅)
65a1i 11 . . . . . 6 (𝜑𝑀 = (toOMeas‘𝑅))
72fdmd 6519 . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝑄)
87eqcomd 2831 . . . . . . . 8 (𝜑𝑄 = dom 𝑅)
98unieqd 4846 . . . . . . 7 (𝜑 𝑄 = dom 𝑅)
109pweqd 4546 . . . . . 6 (𝜑 → 𝒫 𝑄 = 𝒫 dom 𝑅)
116, 10feq12d 6498 . . . . 5 (𝜑 → (𝑀:𝒫 𝑄⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞)))
124, 11mpbird 258 . . . 4 (𝜑𝑀:𝒫 𝑄⟶(0[,]+∞))
13 omsmeas.s . . . . 5 𝑆 = (toCaraSiga‘𝑀)
14 uniexg 7460 . . . . . . 7 (𝑄𝑉 𝑄 ∈ V)
151, 14syl 17 . . . . . 6 (𝜑 𝑄 ∈ V)
1615, 12carsgcl 31450 . . . . 5 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑄)
1713, 16eqsstrid 4018 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑄)
1812, 17fssresd 6541 . . 3 (𝜑 → (𝑀𝑆):𝑆⟶(0[,]+∞))
19 omsmeas.d . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑅)
20 omsmeas.0 . . . . . . . 8 (𝜑 → (𝑅‘∅) = 0)
215, 1, 2, 19, 20oms0 31443 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
2215, 12, 210elcarsg 31453 . . . . . 6 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
2322, 13syl6eleqr 2928 . . . . 5 (𝜑 → ∅ ∈ 𝑆)
24 fvres 6685 . . . . 5 (∅ ∈ 𝑆 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2523, 24syl 17 . . . 4 (𝜑 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2625, 21eqtrd 2860 . . 3 (𝜑 → ((𝑀𝑆)‘∅) = 0)
27 nfcv 2981 . . . . . . . 8 𝑔𝑓
28 nfcv 2981 . . . . . . . 8 𝑓𝑔
29 id 22 . . . . . . . 8 (𝑓 = 𝑔𝑓 = 𝑔)
3027, 28, 29cbvdisj 5037 . . . . . . 7 (Disj 𝑓𝑒 𝑓Disj 𝑔𝑒 𝑔)
3130anbi2i 622 . . . . . 6 ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) ↔ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
321ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄𝑉)
332ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑅:𝑄⟶(0[,]+∞))
34 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ 𝒫 𝑆)
3534elpwid 4555 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
3617ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑆 ⊆ 𝒫 𝑄)
3735, 36sstrd 3980 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ 𝒫 𝑄)
3837sselda 3970 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 ∈ 𝒫 𝑄)
3938elpwid 4555 . . . . . . . . . 10 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 𝑄)
40 simprl 767 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ≼ ω)
415, 32, 33, 39, 40omssubadd 31446 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀 𝑓𝑒 𝑓) ≤ Σ*𝑓𝑒(𝑀𝑓))
4215ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄 ∈ V)
4312ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
4421ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀‘∅) = 0)
45 uniiun 4978 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦𝑥 𝑦
4645fveq2i 6669 . . . . . . . . . . . . . . 15 (𝑀 𝑥) = (𝑀 𝑦𝑥 𝑦)
4713ad2ant1 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑄𝑉)
4823ad2ant1 1127 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
49 simpl3 1187 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑥 ⊆ 𝒫 𝑄)
50 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦𝑥)
5149, 50sseldd 3971 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 ∈ 𝒫 𝑄)
5251elpwid 4555 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 𝑄)
53 simp2 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑥 ≼ ω)
545, 47, 48, 52, 53omssubadd 31446 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑦𝑥 𝑦) ≤ Σ*𝑦𝑥(𝑀𝑦))
5546, 54eqbrtrid 5097 . . . . . . . . . . . . . 14 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
56553adant1r 1171 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
57563adant1r 1171 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5813ad2ant1 1127 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑄𝑉)
5923ad2ant1 1127 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
60 simp2 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑥𝑦)
61 elpwi 4553 . . . . . . . . . . . . . . . 16 (𝑦 ∈ 𝒫 𝑄𝑦 𝑄)
62613ad2ant3 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑦 𝑄)
635, 58, 59, 60, 62omsmon 31444 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
64633adant1r 1171 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
65643adant1r 1171 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
66 elpwi 4553 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆𝑒𝑆)
6766ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
6867, 13syl6sseq 4020 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ (toCaraSiga‘𝑀))
6942, 43, 44, 57, 65, 40, 68carsgclctun 31467 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ (toCaraSiga‘𝑀))
7069, 13syl6eleqr 2928 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
71 fvres 6685 . . . . . . . . . . 11 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
72 uniiun 4978 . . . . . . . . . . . 12 𝑒 = 𝑓𝑒 𝑓
7372fveq2i 6669 . . . . . . . . . . 11 (𝑀 𝑒) = (𝑀 𝑓𝑒 𝑓)
7471, 73syl6eq 2876 . . . . . . . . . 10 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
7570, 74syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
76 nfv 1908 . . . . . . . . . 10 𝑓((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
7767sselda 3970 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓𝑆)
78 fvres 6685 . . . . . . . . . . . 12 (𝑓𝑆 → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7977, 78syl 17 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
8079ralrimiva 3186 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
8176, 80esumeq2d 31184 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) = Σ*𝑓𝑒(𝑀𝑓))
8241, 75, 813brtr4d 5094 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
83 snex 5327 . . . . . . . . . . . . 13 {∅} ∈ V
8483a1i 11 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → {∅} ∈ V)
8543adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
8685, 38ffvelrnd 6847 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑓) ∈ (0[,]+∞))
87 elsni 4580 . . . . . . . . . . . . . 14 (𝑓 ∈ {∅} → 𝑓 = ∅)
8887fveq2d 6670 . . . . . . . . . . . . 13 (𝑓 ∈ {∅} → (𝑀𝑓) = (𝑀‘∅))
8988, 44sylan9eqr 2882 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓 ∈ {∅}) → (𝑀𝑓) = 0)
9034, 84, 86, 89esumpad2 31203 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) = Σ*𝑓𝑒(𝑀𝑓))
91 neldifsnd 4724 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ¬ ∅ ∈ (𝑒 ∖ {∅}))
92 difss 4111 . . . . . . . . . . . . . 14 (𝑒 ∖ {∅}) ⊆ 𝑒
93 ssdomg 8547 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆 → ((𝑒 ∖ {∅}) ⊆ 𝑒 → (𝑒 ∖ {∅}) ≼ 𝑒))
9434, 92, 93mpisyl 21 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ 𝑒)
95 domtr 8554 . . . . . . . . . . . . 13 (((𝑒 ∖ {∅}) ≼ 𝑒𝑒 ≼ ω) → (𝑒 ∖ {∅}) ≼ ω)
9694, 40, 95syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ ω)
9768ssdifssd 4122 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ⊆ (toCaraSiga‘𝑀))
98 simprr 769 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑔𝑒 𝑔)
99 nfcv 2981 . . . . . . . . . . . . . . 15 𝑦𝑔
100 nfcv 2981 . . . . . . . . . . . . . . 15 𝑔𝑦
101 id 22 . . . . . . . . . . . . . . 15 (𝑔 = 𝑦𝑔 = 𝑦)
10299, 100, 101cbvdisj 5037 . . . . . . . . . . . . . 14 (Disj 𝑔𝑒 𝑔Disj 𝑦𝑒 𝑦)
10398, 102sylib 219 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦𝑒 𝑦)
104 disjss1 5033 . . . . . . . . . . . . 13 ((𝑒 ∖ {∅}) ⊆ 𝑒 → (Disj 𝑦𝑒 𝑦Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦))
10592, 103, 104mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦)
10642, 43, 44, 57, 91, 96, 97, 105, 65carsggect 31464 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
10790, 106eqbrtrrd 5086 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
108 unidif0 5256 . . . . . . . . . . 11 (𝑒 ∖ {∅}) = 𝑒
109108fveq2i 6669 . . . . . . . . . 10 (𝑀 (𝑒 ∖ {∅})) = (𝑀 𝑒)
110107, 109breqtrdi 5103 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 𝑒))
11170, 71syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
112110, 81, 1113brtr4d 5094 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))
11382, 112jca 512 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒)))
114 iccssxr 12812 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
11518ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀𝑆):𝑆⟶(0[,]+∞))
116115, 70ffvelrnd 6847 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ (0[,]+∞))
117114, 116sseldi 3968 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ ℝ*)
118115adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑆):𝑆⟶(0[,]+∞))
119118, 77ffvelrnd 6847 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
120119ralrimiva 3186 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
121 nfcv 2981 . . . . . . . . . . 11 𝑓𝑒
122121esumcl 31177 . . . . . . . . . 10 ((𝑒 ∈ 𝒫 𝑆 ∧ ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
12334, 120, 122syl2anc 584 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
124114, 123sseldi 3968 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*)
125 xrletri3 12540 . . . . . . . 8 ((((𝑀𝑆)‘ 𝑒) ∈ ℝ* ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
126117, 124, 125syl2anc 584 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
127113, 126mpbird 258 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
12831, 127sylan2b 593 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
129128ex 413 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑆) → ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
130129ralrimiva 3186 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
13118, 26, 1303jca 1122 . 2 (𝜑 → ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))))
13215, 12, 21, 55, 63carsgsiga 31468 . . . 4 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘ 𝑄))
13313, 132eqeltrid 2921 . . 3 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑄))
134 elrnsiga 31273 . . 3 (𝑆 ∈ (sigAlgebra‘ 𝑄) → 𝑆 ran sigAlgebra)
135 ismeas 31346 . . 3 (𝑆 ran sigAlgebra → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
136133, 134, 1353syl 18 . 2 (𝜑 → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
137131, 136mpbird 258 1 (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  Vcvv 3499  cdif 3936  wss 3939  c0 4294  𝒫 cpw 4541  {csn 4563   cuni 4836   ciun 4916  Disj wdisj 5027   class class class wbr 5062  dom cdm 5553  ran crn 5554  cres 5555  wf 6347  cfv 6351  (class class class)co 7151  ωcom 7571  cdom 8499  0cc0 10529  +∞cpnf 10664  *cxr 10666  cle 10668  [,]cicc 12734  Σ*cesum 31174  sigAlgebracsiga 31255  measurescmeas 31342  toOMeascoms 31437  toCaraSigaccarsg 31447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-reg 9048  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-r1 9185  df-rank 9186  df-dju 9322  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-ordt 16766  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-plusf 17843  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-subrg 19455  df-abv 19510  df-lmod 19558  df-scaf 19559  df-sra 19866  df-rgmod 19867  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-tmd 22598  df-tgp 22599  df-tsms 22652  df-trg 22685  df-xms 22847  df-ms 22848  df-tms 22849  df-nm 23109  df-ngp 23110  df-nrg 23112  df-nlm 23113  df-ii 23402  df-cncf 23403  df-limc 24381  df-dv 24382  df-log 25055  df-esum 31175  df-siga 31256  df-meas 31343  df-oms 31438  df-carsg 31448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator