Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmeas Structured version   Visualization version   GIF version

Theorem omsmeas 34355
Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
omsmeas.m 𝑀 = (toOMeas‘𝑅)
omsmeas.s 𝑆 = (toCaraSiga‘𝑀)
omsmeas.o (𝜑𝑄𝑉)
omsmeas.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmeas.d (𝜑 → ∅ ∈ dom 𝑅)
omsmeas.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
omsmeas (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))

Proof of Theorem omsmeas
Dummy variables 𝑒 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmeas.o . . . . . 6 (𝜑𝑄𝑉)
2 omsmeas.r . . . . . 6 (𝜑𝑅:𝑄⟶(0[,]+∞))
3 omsf 34328 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
5 omsmeas.m . . . . . . 7 𝑀 = (toOMeas‘𝑅)
65a1i 11 . . . . . 6 (𝜑𝑀 = (toOMeas‘𝑅))
72fdmd 6716 . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝑄)
87eqcomd 2741 . . . . . . . 8 (𝜑𝑄 = dom 𝑅)
98unieqd 4896 . . . . . . 7 (𝜑 𝑄 = dom 𝑅)
109pweqd 4592 . . . . . 6 (𝜑 → 𝒫 𝑄 = 𝒫 dom 𝑅)
116, 10feq12d 6694 . . . . 5 (𝜑 → (𝑀:𝒫 𝑄⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞)))
124, 11mpbird 257 . . . 4 (𝜑𝑀:𝒫 𝑄⟶(0[,]+∞))
13 omsmeas.s . . . . 5 𝑆 = (toCaraSiga‘𝑀)
141uniexd 7736 . . . . . 6 (𝜑 𝑄 ∈ V)
1514, 12carsgcl 34336 . . . . 5 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑄)
1613, 15eqsstrid 3997 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑄)
1712, 16fssresd 6745 . . 3 (𝜑 → (𝑀𝑆):𝑆⟶(0[,]+∞))
18 omsmeas.d . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑅)
19 omsmeas.0 . . . . . . . 8 (𝜑 → (𝑅‘∅) = 0)
205, 1, 2, 18, 19oms0 34329 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
2114, 12, 200elcarsg 34339 . . . . . 6 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
2221, 13eleqtrrdi 2845 . . . . 5 (𝜑 → ∅ ∈ 𝑆)
23 fvres 6895 . . . . 5 (∅ ∈ 𝑆 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2422, 23syl 17 . . . 4 (𝜑 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2524, 20eqtrd 2770 . . 3 (𝜑 → ((𝑀𝑆)‘∅) = 0)
26 nfcv 2898 . . . . . . . 8 𝑔𝑓
27 nfcv 2898 . . . . . . . 8 𝑓𝑔
28 id 22 . . . . . . . 8 (𝑓 = 𝑔𝑓 = 𝑔)
2926, 27, 28cbvdisj 5096 . . . . . . 7 (Disj 𝑓𝑒 𝑓Disj 𝑔𝑒 𝑔)
3029anbi2i 623 . . . . . 6 ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) ↔ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
311ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄𝑉)
322ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑅:𝑄⟶(0[,]+∞))
33 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ 𝒫 𝑆)
3433elpwid 4584 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
3516ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑆 ⊆ 𝒫 𝑄)
3634, 35sstrd 3969 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ 𝒫 𝑄)
3736sselda 3958 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 ∈ 𝒫 𝑄)
3837elpwid 4584 . . . . . . . . . 10 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 𝑄)
39 simprl 770 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ≼ ω)
405, 31, 32, 38, 39omssubadd 34332 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀 𝑓𝑒 𝑓) ≤ Σ*𝑓𝑒(𝑀𝑓))
4114ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄 ∈ V)
4212ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
4320ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀‘∅) = 0)
44 uniiun 5034 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦𝑥 𝑦
4544fveq2i 6879 . . . . . . . . . . . . . . 15 (𝑀 𝑥) = (𝑀 𝑦𝑥 𝑦)
4613ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑄𝑉)
4723ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
48 simpl3 1194 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑥 ⊆ 𝒫 𝑄)
49 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦𝑥)
5048, 49sseldd 3959 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 ∈ 𝒫 𝑄)
5150elpwid 4584 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 𝑄)
52 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑥 ≼ ω)
535, 46, 47, 51, 52omssubadd 34332 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑦𝑥 𝑦) ≤ Σ*𝑦𝑥(𝑀𝑦))
5445, 53eqbrtrid 5154 . . . . . . . . . . . . . 14 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
55543adant1r 1178 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
56553adant1r 1178 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5713ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑄𝑉)
5823ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
59 simp2 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑥𝑦)
60 elpwi 4582 . . . . . . . . . . . . . . . 16 (𝑦 ∈ 𝒫 𝑄𝑦 𝑄)
61603ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑦 𝑄)
625, 57, 58, 59, 61omsmon 34330 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
63623adant1r 1178 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
64633adant1r 1178 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
65 elpwi 4582 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆𝑒𝑆)
6665ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
6766, 13sseqtrdi 3999 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ (toCaraSiga‘𝑀))
6841, 42, 43, 56, 64, 39, 67carsgclctun 34353 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ (toCaraSiga‘𝑀))
6968, 13eleqtrrdi 2845 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
70 fvres 6895 . . . . . . . . . . 11 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
71 uniiun 5034 . . . . . . . . . . . 12 𝑒 = 𝑓𝑒 𝑓
7271fveq2i 6879 . . . . . . . . . . 11 (𝑀 𝑒) = (𝑀 𝑓𝑒 𝑓)
7370, 72eqtrdi 2786 . . . . . . . . . 10 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
7469, 73syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
75 nfv 1914 . . . . . . . . . 10 𝑓((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
7666sselda 3958 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓𝑆)
77 fvres 6895 . . . . . . . . . . . 12 (𝑓𝑆 → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7876, 77syl 17 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7978ralrimiva 3132 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
8075, 79esumeq2d 34068 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) = Σ*𝑓𝑒(𝑀𝑓))
8140, 74, 803brtr4d 5151 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
82 snex 5406 . . . . . . . . . . . . 13 {∅} ∈ V
8382a1i 11 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → {∅} ∈ V)
8442adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
8584, 37ffvelcdmd 7075 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑓) ∈ (0[,]+∞))
86 elsni 4618 . . . . . . . . . . . . . 14 (𝑓 ∈ {∅} → 𝑓 = ∅)
8786fveq2d 6880 . . . . . . . . . . . . 13 (𝑓 ∈ {∅} → (𝑀𝑓) = (𝑀‘∅))
8887, 43sylan9eqr 2792 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓 ∈ {∅}) → (𝑀𝑓) = 0)
8933, 83, 85, 88esumpad2 34087 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) = Σ*𝑓𝑒(𝑀𝑓))
90 neldifsnd 4769 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ¬ ∅ ∈ (𝑒 ∖ {∅}))
91 difss 4111 . . . . . . . . . . . . . 14 (𝑒 ∖ {∅}) ⊆ 𝑒
92 ssdomg 9014 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆 → ((𝑒 ∖ {∅}) ⊆ 𝑒 → (𝑒 ∖ {∅}) ≼ 𝑒))
9333, 91, 92mpisyl 21 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ 𝑒)
94 domtr 9021 . . . . . . . . . . . . 13 (((𝑒 ∖ {∅}) ≼ 𝑒𝑒 ≼ ω) → (𝑒 ∖ {∅}) ≼ ω)
9593, 39, 94syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ ω)
9667ssdifssd 4122 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ⊆ (toCaraSiga‘𝑀))
97 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑔𝑒 𝑔)
98 nfcv 2898 . . . . . . . . . . . . . . 15 𝑦𝑔
99 nfcv 2898 . . . . . . . . . . . . . . 15 𝑔𝑦
100 id 22 . . . . . . . . . . . . . . 15 (𝑔 = 𝑦𝑔 = 𝑦)
10198, 99, 100cbvdisj 5096 . . . . . . . . . . . . . 14 (Disj 𝑔𝑒 𝑔Disj 𝑦𝑒 𝑦)
10297, 101sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦𝑒 𝑦)
103 disjss1 5092 . . . . . . . . . . . . 13 ((𝑒 ∖ {∅}) ⊆ 𝑒 → (Disj 𝑦𝑒 𝑦Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦))
10491, 102, 103mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦)
10541, 42, 43, 56, 90, 95, 96, 104, 64carsggect 34350 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
10689, 105eqbrtrrd 5143 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
107 unidif0 5330 . . . . . . . . . . 11 (𝑒 ∖ {∅}) = 𝑒
108107fveq2i 6879 . . . . . . . . . 10 (𝑀 (𝑒 ∖ {∅})) = (𝑀 𝑒)
109106, 108breqtrdi 5160 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 𝑒))
11069, 70syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
111109, 80, 1103brtr4d 5151 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))
11281, 111jca 511 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒)))
113 iccssxr 13447 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
11417ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀𝑆):𝑆⟶(0[,]+∞))
115114, 69ffvelcdmd 7075 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ (0[,]+∞))
116113, 115sselid 3956 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ ℝ*)
117114adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑆):𝑆⟶(0[,]+∞))
118117, 76ffvelcdmd 7075 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
119118ralrimiva 3132 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
120 nfcv 2898 . . . . . . . . . . 11 𝑓𝑒
121120esumcl 34061 . . . . . . . . . 10 ((𝑒 ∈ 𝒫 𝑆 ∧ ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
12233, 119, 121syl2anc 584 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
123113, 122sselid 3956 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*)
124 xrletri3 13170 . . . . . . . 8 ((((𝑀𝑆)‘ 𝑒) ∈ ℝ* ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
125116, 123, 124syl2anc 584 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
126112, 125mpbird 257 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
12730, 126sylan2b 594 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
128127ex 412 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑆) → ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
129128ralrimiva 3132 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
13017, 25, 1293jca 1128 . 2 (𝜑 → ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))))
13114, 12, 20, 54, 62carsgsiga 34354 . . . 4 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘ 𝑄))
13213, 131eqeltrid 2838 . . 3 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑄))
133 elrnsiga 34157 . . 3 (𝑆 ∈ (sigAlgebra‘ 𝑄) → 𝑆 ran sigAlgebra)
134 ismeas 34230 . . 3 (𝑆 ran sigAlgebra → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
135132, 133, 1343syl 18 . 2 (𝜑 → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
136130, 135mpbird 257 1 (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   ciun 4967  Disj wdisj 5086   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  0cc0 11129  +∞cpnf 11266  *cxr 11268  cle 11270  [,]cicc 13365  Σ*cesum 34058  sigAlgebracsiga 34139  measurescmeas 34226  toOMeascoms 34323  toCaraSigaccarsg 34333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-ordt 17515  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-abv 20769  df-lmod 20819  df-scaf 20820  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tmd 24010  df-tgp 24011  df-tsms 24065  df-trg 24098  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522  df-nrg 24524  df-nlm 24525  df-ii 24821  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-esum 34059  df-siga 34140  df-meas 34227  df-oms 34324  df-carsg 34334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator