Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsmeas Structured version   Visualization version   GIF version

Theorem omsmeas 32002
Description: The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
omsmeas.m 𝑀 = (toOMeas‘𝑅)
omsmeas.s 𝑆 = (toCaraSiga‘𝑀)
omsmeas.o (𝜑𝑄𝑉)
omsmeas.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omsmeas.d (𝜑 → ∅ ∈ dom 𝑅)
omsmeas.0 (𝜑 → (𝑅‘∅) = 0)
Assertion
Ref Expression
omsmeas (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))

Proof of Theorem omsmeas
Dummy variables 𝑒 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omsmeas.o . . . . . 6 (𝜑𝑄𝑉)
2 omsmeas.r . . . . . 6 (𝜑𝑅:𝑄⟶(0[,]+∞))
3 omsf 31975 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
41, 2, 3syl2anc 587 . . . . 5 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
5 omsmeas.m . . . . . . 7 𝑀 = (toOMeas‘𝑅)
65a1i 11 . . . . . 6 (𝜑𝑀 = (toOMeas‘𝑅))
72fdmd 6556 . . . . . . . . 9 (𝜑 → dom 𝑅 = 𝑄)
87eqcomd 2743 . . . . . . . 8 (𝜑𝑄 = dom 𝑅)
98unieqd 4833 . . . . . . 7 (𝜑 𝑄 = dom 𝑅)
109pweqd 4532 . . . . . 6 (𝜑 → 𝒫 𝑄 = 𝒫 dom 𝑅)
116, 10feq12d 6533 . . . . 5 (𝜑 → (𝑀:𝒫 𝑄⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞)))
124, 11mpbird 260 . . . 4 (𝜑𝑀:𝒫 𝑄⟶(0[,]+∞))
13 omsmeas.s . . . . 5 𝑆 = (toCaraSiga‘𝑀)
141uniexd 7530 . . . . . 6 (𝜑 𝑄 ∈ V)
1514, 12carsgcl 31983 . . . . 5 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑄)
1613, 15eqsstrid 3949 . . . 4 (𝜑𝑆 ⊆ 𝒫 𝑄)
1712, 16fssresd 6586 . . 3 (𝜑 → (𝑀𝑆):𝑆⟶(0[,]+∞))
18 omsmeas.d . . . . . . . 8 (𝜑 → ∅ ∈ dom 𝑅)
19 omsmeas.0 . . . . . . . 8 (𝜑 → (𝑅‘∅) = 0)
205, 1, 2, 18, 19oms0 31976 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
2114, 12, 200elcarsg 31986 . . . . . 6 (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
2221, 13eleqtrrdi 2849 . . . . 5 (𝜑 → ∅ ∈ 𝑆)
23 fvres 6736 . . . . 5 (∅ ∈ 𝑆 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2422, 23syl 17 . . . 4 (𝜑 → ((𝑀𝑆)‘∅) = (𝑀‘∅))
2524, 20eqtrd 2777 . . 3 (𝜑 → ((𝑀𝑆)‘∅) = 0)
26 nfcv 2904 . . . . . . . 8 𝑔𝑓
27 nfcv 2904 . . . . . . . 8 𝑓𝑔
28 id 22 . . . . . . . 8 (𝑓 = 𝑔𝑓 = 𝑔)
2926, 27, 28cbvdisj 5028 . . . . . . 7 (Disj 𝑓𝑒 𝑓Disj 𝑔𝑒 𝑔)
3029anbi2i 626 . . . . . 6 ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) ↔ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
311ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄𝑉)
322ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑅:𝑄⟶(0[,]+∞))
33 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ 𝒫 𝑆)
3433elpwid 4524 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
3516ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑆 ⊆ 𝒫 𝑄)
3634, 35sstrd 3911 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ 𝒫 𝑄)
3736sselda 3901 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 ∈ 𝒫 𝑄)
3837elpwid 4524 . . . . . . . . . 10 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓 𝑄)
39 simprl 771 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ≼ ω)
405, 31, 32, 38, 39omssubadd 31979 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀 𝑓𝑒 𝑓) ≤ Σ*𝑓𝑒(𝑀𝑓))
4114ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑄 ∈ V)
4212ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
4320ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀‘∅) = 0)
44 uniiun 4967 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦𝑥 𝑦
4544fveq2i 6720 . . . . . . . . . . . . . . 15 (𝑀 𝑥) = (𝑀 𝑦𝑥 𝑦)
4613ad2ant1 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑄𝑉)
4723ad2ant1 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
48 simpl3 1195 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑥 ⊆ 𝒫 𝑄)
49 simpr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦𝑥)
5048, 49sseldd 3902 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 ∈ 𝒫 𝑄)
5150elpwid 4524 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) ∧ 𝑦𝑥) → 𝑦 𝑄)
52 simp2 1139 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → 𝑥 ≼ ω)
535, 46, 47, 51, 52omssubadd 31979 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑦𝑥 𝑦) ≤ Σ*𝑦𝑥(𝑀𝑦))
5445, 53eqbrtrid 5088 . . . . . . . . . . . . . 14 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
55543adant1r 1179 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
56553adant1r 1179 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑄) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5713ad2ant1 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑄𝑉)
5823ad2ant1 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
59 simp2 1139 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑥𝑦)
60 elpwi 4522 . . . . . . . . . . . . . . . 16 (𝑦 ∈ 𝒫 𝑄𝑦 𝑄)
61603ad2ant3 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → 𝑦 𝑄)
625, 57, 58, 59, 61omsmon 31977 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
63623adant1r 1179 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
64633adant1r 1179 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑄) → (𝑀𝑥) ≤ (𝑀𝑦))
65 elpwi 4522 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆𝑒𝑆)
6665ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
6766, 13sseqtrdi 3951 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ⊆ (toCaraSiga‘𝑀))
6841, 42, 43, 56, 64, 39, 67carsgclctun 32000 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒 ∈ (toCaraSiga‘𝑀))
6968, 13eleqtrrdi 2849 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → 𝑒𝑆)
70 fvres 6736 . . . . . . . . . . 11 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
71 uniiun 4967 . . . . . . . . . . . 12 𝑒 = 𝑓𝑒 𝑓
7271fveq2i 6720 . . . . . . . . . . 11 (𝑀 𝑒) = (𝑀 𝑓𝑒 𝑓)
7370, 72eqtrdi 2794 . . . . . . . . . 10 ( 𝑒𝑆 → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
7469, 73syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑓𝑒 𝑓))
75 nfv 1922 . . . . . . . . . 10 𝑓((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔))
7666sselda 3901 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑓𝑆)
77 fvres 6736 . . . . . . . . . . . 12 (𝑓𝑆 → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7876, 77syl 17 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
7978ralrimiva 3105 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) = (𝑀𝑓))
8075, 79esumeq2d 31717 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) = Σ*𝑓𝑒(𝑀𝑓))
8140, 74, 803brtr4d 5085 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
82 snex 5324 . . . . . . . . . . . . 13 {∅} ∈ V
8382a1i 11 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → {∅} ∈ V)
8442adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → 𝑀:𝒫 𝑄⟶(0[,]+∞))
8584, 37ffvelrnd 6905 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑓) ∈ (0[,]+∞))
86 elsni 4558 . . . . . . . . . . . . . 14 (𝑓 ∈ {∅} → 𝑓 = ∅)
8786fveq2d 6721 . . . . . . . . . . . . 13 (𝑓 ∈ {∅} → (𝑀𝑓) = (𝑀‘∅))
8887, 43sylan9eqr 2800 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓 ∈ {∅}) → (𝑀𝑓) = 0)
8933, 83, 85, 88esumpad2 31736 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) = Σ*𝑓𝑒(𝑀𝑓))
90 neldifsnd 4706 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ¬ ∅ ∈ (𝑒 ∖ {∅}))
91 difss 4046 . . . . . . . . . . . . . 14 (𝑒 ∖ {∅}) ⊆ 𝑒
92 ssdomg 8674 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 𝑆 → ((𝑒 ∖ {∅}) ⊆ 𝑒 → (𝑒 ∖ {∅}) ≼ 𝑒))
9333, 91, 92mpisyl 21 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ 𝑒)
94 domtr 8681 . . . . . . . . . . . . 13 (((𝑒 ∖ {∅}) ≼ 𝑒𝑒 ≼ ω) → (𝑒 ∖ {∅}) ≼ ω)
9593, 39, 94syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ≼ ω)
9667ssdifssd 4057 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑒 ∖ {∅}) ⊆ (toCaraSiga‘𝑀))
97 simprr 773 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑔𝑒 𝑔)
98 nfcv 2904 . . . . . . . . . . . . . . 15 𝑦𝑔
99 nfcv 2904 . . . . . . . . . . . . . . 15 𝑔𝑦
100 id 22 . . . . . . . . . . . . . . 15 (𝑔 = 𝑦𝑔 = 𝑦)
10198, 99, 100cbvdisj 5028 . . . . . . . . . . . . . 14 (Disj 𝑔𝑒 𝑔Disj 𝑦𝑒 𝑦)
10297, 101sylib 221 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦𝑒 𝑦)
103 disjss1 5024 . . . . . . . . . . . . 13 ((𝑒 ∖ {∅}) ⊆ 𝑒 → (Disj 𝑦𝑒 𝑦Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦))
10491, 102, 103mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Disj 𝑦 ∈ (𝑒 ∖ {∅})𝑦)
10541, 42, 43, 56, 90, 95, 96, 104, 64carsggect 31997 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓 ∈ (𝑒 ∖ {∅})(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
10689, 105eqbrtrrd 5077 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 (𝑒 ∖ {∅})))
107 unidif0 5251 . . . . . . . . . . 11 (𝑒 ∖ {∅}) = 𝑒
108107fveq2i 6720 . . . . . . . . . 10 (𝑀 (𝑒 ∖ {∅})) = (𝑀 𝑒)
109106, 108breqtrdi 5094 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒(𝑀𝑓) ≤ (𝑀 𝑒))
11069, 70syl 17 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = (𝑀 𝑒))
111109, 80, 1103brtr4d 5085 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))
11281, 111jca 515 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒)))
113 iccssxr 13018 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
11417ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (𝑀𝑆):𝑆⟶(0[,]+∞))
115114, 69ffvelrnd 6905 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ (0[,]+∞))
116113, 115sseldi 3899 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) ∈ ℝ*)
117114adantr 484 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → (𝑀𝑆):𝑆⟶(0[,]+∞))
118117, 76ffvelrnd 6905 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) ∧ 𝑓𝑒) → ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
119118ralrimiva 3105 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
120 nfcv 2904 . . . . . . . . . . 11 𝑓𝑒
121120esumcl 31710 . . . . . . . . . 10 ((𝑒 ∈ 𝒫 𝑆 ∧ ∀𝑓𝑒 ((𝑀𝑆)‘𝑓) ∈ (0[,]+∞)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
12233, 119, 121syl2anc 587 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ (0[,]+∞))
123113, 122sseldi 3899 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*)
124 xrletri3 12744 . . . . . . . 8 ((((𝑀𝑆)‘ 𝑒) ∈ ℝ* ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∈ ℝ*) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
125116, 123, 124syl2anc 587 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → (((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ↔ (((𝑀𝑆)‘ 𝑒) ≤ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ∧ Σ*𝑓𝑒((𝑀𝑆)‘𝑓) ≤ ((𝑀𝑆)‘ 𝑒))))
126112, 125mpbird 260 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑔𝑒 𝑔)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
12730, 126sylan2b 597 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑆) ∧ (𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓)) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))
128127ex 416 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑆) → ((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
129128ralrimiva 3105 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))
13017, 25, 1293jca 1130 . 2 (𝜑 → ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓))))
13114, 12, 20, 54, 62carsgsiga 32001 . . . 4 (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘ 𝑄))
13213, 131eqeltrid 2842 . . 3 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑄))
133 elrnsiga 31806 . . 3 (𝑆 ∈ (sigAlgebra‘ 𝑄) → 𝑆 ran sigAlgebra)
134 ismeas 31879 . . 3 (𝑆 ran sigAlgebra → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
135132, 133, 1343syl 18 . 2 (𝜑 → ((𝑀𝑆) ∈ (measures‘𝑆) ↔ ((𝑀𝑆):𝑆⟶(0[,]+∞) ∧ ((𝑀𝑆)‘∅) = 0 ∧ ∀𝑒 ∈ 𝒫 𝑆((𝑒 ≼ ω ∧ Disj 𝑓𝑒 𝑓) → ((𝑀𝑆)‘ 𝑒) = Σ*𝑓𝑒((𝑀𝑆)‘𝑓)))))
136130, 135mpbird 260 1 (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cdif 3863  wss 3866  c0 4237  𝒫 cpw 4513  {csn 4541   cuni 4819   ciun 4904  Disj wdisj 5018   class class class wbr 5053  dom cdm 5551  ran crn 5552  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  ωcom 7644  cdom 8624  0cc0 10729  +∞cpnf 10864  *cxr 10866  cle 10868  [,]cicc 12938  Σ*cesum 31707  sigAlgebracsiga 31788  measurescmeas 31875  toOMeascoms 31970  toCaraSigaccarsg 31980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-reg 9208  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-r1 9380  df-rank 9381  df-dju 9517  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-ordt 17006  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-ps 18072  df-tsr 18073  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-subrg 19798  df-abv 19853  df-lmod 19901  df-scaf 19902  df-sra 20209  df-rgmod 20210  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tmd 22969  df-tgp 22970  df-tsms 23024  df-trg 23057  df-xms 23218  df-ms 23219  df-tms 23220  df-nm 23480  df-ngp 23481  df-nrg 23483  df-nlm 23484  df-ii 23774  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-esum 31708  df-siga 31789  df-meas 31876  df-oms 31971  df-carsg 31981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator