| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmptf | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2372. See cbvmptfg 5192 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvmptf.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvmptf.3 | ⊢ Ⅎ𝑦𝐵 |
| cbvmptf.4 | ⊢ Ⅎ𝑥𝐶 |
| cbvmptf.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptf | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
| 2 | cbvmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 4 | nfs1v 2159 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
| 5 | 3, 4 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 6 | eleq1w 2814 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 7 | sbequ12 2254 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
| 9 | 1, 5, 8 | cbvopab1 5165 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
| 10 | cbvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 11 | 10 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
| 12 | cbvmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 13 | 12 | nfeq2 2912 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
| 14 | 13 | nfsbv 2331 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
| 15 | 11, 14 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 16 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
| 17 | eleq1w 2814 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | sbequ 2086 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
| 19 | cbvmptf.4 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 20 | 19 | nfeq2 2912 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
| 21 | cbvmptf.5 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 22 | 21 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 23 | 20, 22 | sbiev 2315 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
| 24 | 18, 23 | bitrdi 287 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 25 | 17, 24 | anbi12d 632 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
| 26 | 15, 16, 25 | cbvopab1 5165 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 27 | 9, 26 | eqtri 2754 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 28 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 29 | df-mpt 5173 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
| 30 | 27, 28, 29 | 3eqtr4i 2764 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 [wsb 2067 ∈ wcel 2111 Ⅎwnfc 2879 {copab 5153 ↦ cmpt 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-mpt 5173 |
| This theorem is referenced by: cbvmpt 5193 resmptf 5988 fvmpt2f 6930 offval2f 7625 suppss2f 32615 fmptdF 32633 acunirnmpt2f 32638 funcnv4mpt 32646 cbvesum 34050 esumpfinvalf 34084 binomcxplemdvbinom 44385 binomcxplemdvsum 44387 binomcxplemnotnn0 44388 fmptff 45305 supxrleubrnmptf 45488 fnlimfv 45700 fnlimfvre2 45714 fnlimf 45715 limsupequzmptf 45768 sge0iunmptlemre 46452 smflim 46814 smflim2 46843 smfsup 46851 smfinf 46855 smflimsuplem2 46858 smflimsuplem5 46861 smflimsup 46865 smfliminf 46868 |
| Copyright terms: Public domain | W3C validator |