Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptf Structured version   Visualization version   GIF version

Theorem cbvmptf 5161
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2385. See cbvmptfg 5162 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
Hypotheses
Ref Expression
cbvmptf.1 𝑥𝐴
cbvmptf.2 𝑦𝐴
cbvmptf.3 𝑦𝐵
cbvmptf.4 𝑥𝐶
cbvmptf.5 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptf (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmptf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1908 . . . 4 𝑤(𝑥𝐴𝑧 = 𝐵)
2 cbvmptf.1 . . . . . 6 𝑥𝐴
32nfcri 2975 . . . . 5 𝑥 𝑤𝐴
4 nfs1v 2267 . . . . 5 𝑥[𝑤 / 𝑥]𝑧 = 𝐵
53, 4nfan 1893 . . . 4 𝑥(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
6 eleq1w 2899 . . . . 5 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
7 sbequ12 2246 . . . . 5 (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵))
86, 7anbi12d 630 . . . 4 (𝑥 = 𝑤 → ((𝑥𝐴𝑧 = 𝐵) ↔ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)))
91, 5, 8cbvopab1 5135 . . 3 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)}
10 cbvmptf.2 . . . . . 6 𝑦𝐴
1110nfcri 2975 . . . . 5 𝑦 𝑤𝐴
12 cbvmptf.3 . . . . . . 7 𝑦𝐵
1312nfeq2 2999 . . . . . 6 𝑦 𝑧 = 𝐵
1413nfsbv 2343 . . . . 5 𝑦[𝑤 / 𝑥]𝑧 = 𝐵
1511, 14nfan 1893 . . . 4 𝑦(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
16 nfv 1908 . . . 4 𝑤(𝑦𝐴𝑧 = 𝐶)
17 eleq1w 2899 . . . . 5 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
18 sbequ 2083 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵))
19 cbvmptf.4 . . . . . . . 8 𝑥𝐶
2019nfeq2 2999 . . . . . . 7 𝑥 𝑧 = 𝐶
21 cbvmptf.5 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝐶)
2221eqeq2d 2836 . . . . . . 7 (𝑥 = 𝑦 → (𝑧 = 𝐵𝑧 = 𝐶))
2320, 22sbiev 2324 . . . . . 6 ([𝑦 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶)
2418, 23syl6bb 288 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶))
2517, 24anbi12d 630 . . . 4 (𝑤 = 𝑦 → ((𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦𝐴𝑧 = 𝐶)))
2615, 16, 25cbvopab1 5135 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
279, 26eqtri 2848 . 2 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
28 df-mpt 5143 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
29 df-mpt 5143 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
3027, 28, 293eqtr4i 2858 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530  [wsb 2062   ∈ wcel 2107  Ⅎwnfc 2965  {copab 5124   ↦ cmpt 5142 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-opab 5125  df-mpt 5143 This theorem is referenced by:  cbvmpt  5163  resmptf  5905  fvmpt2f  6765  offval2f  7414  suppss2f  30299  fmptdF  30316  acunirnmpt2f  30321  funcnv4mpt  30329  cbvesum  31187  esumpfinvalf  31221  binomcxplemdvbinom  40546  binomcxplemdvsum  40548  binomcxplemnotnn0  40549  supxrleubrnmptf  41588  fnlimfv  41805  fnlimfvre2  41819  fnlimf  41820  limsupequzmptf  41873  sge0iunmptlemre  42559  smflim  42915  smflim2  42942  smfsup  42950  smfinf  42954  smflimsuplem2  42957  smflimsuplem5  42960  smflimsup  42964  smfliminf  42967
 Copyright terms: Public domain W3C validator