![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmptf | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2380. See cbvmptfg 5276 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
Ref | Expression |
---|---|
cbvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
cbvmptf.2 | ⊢ Ⅎ𝑦𝐴 |
cbvmptf.3 | ⊢ Ⅎ𝑦𝐵 |
cbvmptf.4 | ⊢ Ⅎ𝑥𝐶 |
cbvmptf.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptf | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
2 | cbvmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2900 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
4 | nfs1v 2157 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
5 | 3, 4 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
6 | eleq1w 2827 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
7 | sbequ12 2252 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
8 | 6, 7 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
9 | 1, 5, 8 | cbvopab1 5241 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
10 | cbvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
11 | 10 | nfcri 2900 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
12 | cbvmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
13 | 12 | nfeq2 2926 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
14 | 13 | nfsbv 2334 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
15 | 11, 14 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
16 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
17 | eleq1w 2827 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | sbequ 2083 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
19 | cbvmptf.4 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
20 | 19 | nfeq2 2926 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
21 | cbvmptf.5 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
22 | 21 | eqeq2d 2751 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
23 | 20, 22 | sbiev 2318 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
24 | 18, 23 | bitrdi 287 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
25 | 17, 24 | anbi12d 631 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
26 | 15, 16, 25 | cbvopab1 5241 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
27 | 9, 26 | eqtri 2768 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
28 | df-mpt 5250 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
29 | df-mpt 5250 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
30 | 27, 28, 29 | 3eqtr4i 2778 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 [wsb 2064 ∈ wcel 2108 Ⅎwnfc 2893 {copab 5228 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: cbvmpt 5277 resmptf 6068 fvmpt2f 7030 offval2f 7729 suppss2f 32657 fmptdF 32674 acunirnmpt2f 32679 funcnv4mpt 32687 cbvesum 34006 esumpfinvalf 34040 binomcxplemdvbinom 44322 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 fmptff 45179 supxrleubrnmptf 45366 fnlimfv 45584 fnlimfvre2 45598 fnlimf 45599 limsupequzmptf 45652 sge0iunmptlemre 46336 smflim 46698 smflim2 46727 smfsup 46735 smfinf 46739 smflimsuplem2 46742 smflimsuplem5 46745 smflimsup 46749 smfliminf 46752 |
Copyright terms: Public domain | W3C validator |