| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmptf | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2371. See cbvmptfg 5211 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvmptf.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvmptf.3 | ⊢ Ⅎ𝑦𝐵 |
| cbvmptf.4 | ⊢ Ⅎ𝑥𝐶 |
| cbvmptf.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptf | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
| 2 | cbvmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2884 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 4 | nfs1v 2157 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
| 5 | 3, 4 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 6 | eleq1w 2812 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 7 | sbequ12 2252 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
| 9 | 1, 5, 8 | cbvopab1 5184 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
| 10 | cbvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 11 | 10 | nfcri 2884 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
| 12 | cbvmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 13 | 12 | nfeq2 2910 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
| 14 | 13 | nfsbv 2329 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
| 15 | 11, 14 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 16 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
| 17 | eleq1w 2812 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | sbequ 2084 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
| 19 | cbvmptf.4 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 20 | 19 | nfeq2 2910 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
| 21 | cbvmptf.5 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 22 | 21 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 23 | 20, 22 | sbiev 2313 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
| 24 | 18, 23 | bitrdi 287 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 25 | 17, 24 | anbi12d 632 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
| 26 | 15, 16, 25 | cbvopab1 5184 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 27 | 9, 26 | eqtri 2753 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 28 | df-mpt 5192 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 29 | df-mpt 5192 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
| 30 | 27, 28, 29 | 3eqtr4i 2763 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 [wsb 2065 ∈ wcel 2109 Ⅎwnfc 2877 {copab 5172 ↦ cmpt 5191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-mpt 5192 |
| This theorem is referenced by: cbvmpt 5212 resmptf 6013 fvmpt2f 6972 offval2f 7671 suppss2f 32569 fmptdF 32587 acunirnmpt2f 32592 funcnv4mpt 32600 cbvesum 34039 esumpfinvalf 34073 binomcxplemdvbinom 44349 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 fmptff 45270 supxrleubrnmptf 45454 fnlimfv 45668 fnlimfvre2 45682 fnlimf 45683 limsupequzmptf 45736 sge0iunmptlemre 46420 smflim 46782 smflim2 46811 smfsup 46819 smfinf 46823 smflimsuplem2 46826 smflimsuplem5 46829 smflimsup 46833 smfliminf 46836 |
| Copyright terms: Public domain | W3C validator |