MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptf Structured version   Visualization version   GIF version

Theorem cbvmptf 5179
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2372. See cbvmptfg 5180 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
Hypotheses
Ref Expression
cbvmptf.1 𝑥𝐴
cbvmptf.2 𝑦𝐴
cbvmptf.3 𝑦𝐵
cbvmptf.4 𝑥𝐶
cbvmptf.5 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptf (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmptf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑤(𝑥𝐴𝑧 = 𝐵)
2 cbvmptf.1 . . . . . 6 𝑥𝐴
32nfcri 2893 . . . . 5 𝑥 𝑤𝐴
4 nfs1v 2155 . . . . 5 𝑥[𝑤 / 𝑥]𝑧 = 𝐵
53, 4nfan 1903 . . . 4 𝑥(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
6 eleq1w 2821 . . . . 5 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
7 sbequ12 2247 . . . . 5 (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵))
86, 7anbi12d 630 . . . 4 (𝑥 = 𝑤 → ((𝑥𝐴𝑧 = 𝐵) ↔ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)))
91, 5, 8cbvopab1 5145 . . 3 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)}
10 cbvmptf.2 . . . . . 6 𝑦𝐴
1110nfcri 2893 . . . . 5 𝑦 𝑤𝐴
12 cbvmptf.3 . . . . . . 7 𝑦𝐵
1312nfeq2 2923 . . . . . 6 𝑦 𝑧 = 𝐵
1413nfsbv 2328 . . . . 5 𝑦[𝑤 / 𝑥]𝑧 = 𝐵
1511, 14nfan 1903 . . . 4 𝑦(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
16 nfv 1918 . . . 4 𝑤(𝑦𝐴𝑧 = 𝐶)
17 eleq1w 2821 . . . . 5 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
18 sbequ 2087 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵))
19 cbvmptf.4 . . . . . . . 8 𝑥𝐶
2019nfeq2 2923 . . . . . . 7 𝑥 𝑧 = 𝐶
21 cbvmptf.5 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝐶)
2221eqeq2d 2749 . . . . . . 7 (𝑥 = 𝑦 → (𝑧 = 𝐵𝑧 = 𝐶))
2320, 22sbiev 2312 . . . . . 6 ([𝑦 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶)
2418, 23bitrdi 286 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶))
2517, 24anbi12d 630 . . . 4 (𝑤 = 𝑦 → ((𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦𝐴𝑧 = 𝐶)))
2615, 16, 25cbvopab1 5145 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
279, 26eqtri 2766 . 2 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
28 df-mpt 5154 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
29 df-mpt 5154 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
3027, 28, 293eqtr4i 2776 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  [wsb 2068  wcel 2108  wnfc 2886  {copab 5132  cmpt 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-mpt 5154
This theorem is referenced by:  cbvmpt  5181  resmptf  5936  fvmpt2f  6858  offval2f  7526  suppss2f  30875  fmptdF  30895  acunirnmpt2f  30900  funcnv4mpt  30908  cbvesum  31910  esumpfinvalf  31944  binomcxplemdvbinom  41860  binomcxplemdvsum  41862  binomcxplemnotnn0  41863  supxrleubrnmptf  42881  fnlimfv  43094  fnlimfvre2  43108  fnlimf  43109  limsupequzmptf  43162  sge0iunmptlemre  43843  smflim  44199  smflim2  44226  smfsup  44234  smfinf  44238  smflimsuplem2  44241  smflimsuplem5  44244  smflimsup  44248  smfliminf  44251
  Copyright terms: Public domain W3C validator