| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmptf | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2374. See cbvmptfg 5194 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvmptf.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvmptf.3 | ⊢ Ⅎ𝑦𝐵 |
| cbvmptf.4 | ⊢ Ⅎ𝑥𝐶 |
| cbvmptf.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptf | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
| 2 | cbvmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2887 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 4 | nfs1v 2161 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
| 5 | 3, 4 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 6 | eleq1w 2816 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 7 | sbequ12 2256 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
| 9 | 1, 5, 8 | cbvopab1 5167 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
| 10 | cbvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 11 | 10 | nfcri 2887 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
| 12 | cbvmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 13 | 12 | nfeq2 2913 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
| 14 | 13 | nfsbv 2333 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
| 15 | 11, 14 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 16 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
| 17 | eleq1w 2816 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | sbequ 2088 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
| 19 | cbvmptf.4 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 20 | 19 | nfeq2 2913 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
| 21 | cbvmptf.5 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 22 | 21 | eqeq2d 2744 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 23 | 20, 22 | sbiev 2317 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
| 24 | 18, 23 | bitrdi 287 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 25 | 17, 24 | anbi12d 632 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
| 26 | 15, 16, 25 | cbvopab1 5167 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 27 | 9, 26 | eqtri 2756 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 28 | df-mpt 5175 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 29 | df-mpt 5175 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
| 30 | 27, 28, 29 | 3eqtr4i 2766 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 [wsb 2067 ∈ wcel 2113 Ⅎwnfc 2880 {copab 5155 ↦ cmpt 5174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-mpt 5175 |
| This theorem is referenced by: cbvmpt 5195 resmptf 5992 fvmpt2f 6936 offval2f 7631 suppss2f 32622 fmptdF 32640 acunirnmpt2f 32645 funcnv4mpt 32653 cbvesum 34076 esumpfinvalf 34110 binomcxplemdvbinom 44470 binomcxplemdvsum 44472 binomcxplemnotnn0 44473 fmptff 45390 supxrleubrnmptf 45573 fnlimfv 45785 fnlimfvre2 45799 fnlimf 45800 limsupequzmptf 45853 sge0iunmptlemre 46537 smflim 46899 smflim2 46928 smfsup 46936 smfinf 46940 smflimsuplem2 46943 smflimsuplem5 46946 smflimsup 46950 smfliminf 46953 |
| Copyright terms: Public domain | W3C validator |