![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmptf | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2370. See cbvmptfg 5220 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) |
Ref | Expression |
---|---|
cbvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
cbvmptf.2 | ⊢ Ⅎ𝑦𝐴 |
cbvmptf.3 | ⊢ Ⅎ𝑦𝐵 |
cbvmptf.4 | ⊢ Ⅎ𝑥𝐶 |
cbvmptf.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptf | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
2 | cbvmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2889 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
4 | nfs1v 2153 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
5 | 3, 4 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
6 | eleq1w 2815 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
7 | sbequ12 2243 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
8 | 6, 7 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
9 | 1, 5, 8 | cbvopab1 5185 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
10 | cbvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
11 | 10 | nfcri 2889 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
12 | cbvmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
13 | 12 | nfeq2 2919 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
14 | 13 | nfsbv 2323 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
15 | 11, 14 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
16 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
17 | eleq1w 2815 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | sbequ 2086 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
19 | cbvmptf.4 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
20 | 19 | nfeq2 2919 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
21 | cbvmptf.5 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
22 | 21 | eqeq2d 2742 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
23 | 20, 22 | sbiev 2308 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
24 | 18, 23 | bitrdi 286 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
25 | 17, 24 | anbi12d 631 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
26 | 15, 16, 25 | cbvopab1 5185 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
27 | 9, 26 | eqtri 2759 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
28 | df-mpt 5194 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
29 | df-mpt 5194 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
30 | 27, 28, 29 | 3eqtr4i 2769 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 [wsb 2067 ∈ wcel 2106 Ⅎwnfc 2882 {copab 5172 ↦ cmpt 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3406 df-v 3448 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 df-mpt 5194 |
This theorem is referenced by: cbvmpt 5221 resmptf 5998 fvmpt2f 6954 offval2f 7637 suppss2f 31620 fmptdF 31639 acunirnmpt2f 31644 funcnv4mpt 31652 cbvesum 32730 esumpfinvalf 32764 binomcxplemdvbinom 42755 binomcxplemdvsum 42757 binomcxplemnotnn0 42758 fmptff 43619 supxrleubrnmptf 43806 fnlimfv 44024 fnlimfvre2 44038 fnlimf 44039 limsupequzmptf 44092 sge0iunmptlemre 44776 smflim 45138 smflim2 45167 smfsup 45175 smfinf 45179 smflimsuplem2 45182 smflimsuplem5 45185 smflimsup 45189 smfliminf 45192 |
Copyright terms: Public domain | W3C validator |