MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptf Structured version   Visualization version   GIF version

Theorem cbvmptf 5184
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2373. See cbvmptfg 5185 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.)
Hypotheses
Ref Expression
cbvmptf.1 𝑥𝐴
cbvmptf.2 𝑦𝐴
cbvmptf.3 𝑦𝐵
cbvmptf.4 𝑥𝐶
cbvmptf.5 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptf (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvmptf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑤(𝑥𝐴𝑧 = 𝐵)
2 cbvmptf.1 . . . . . 6 𝑥𝐴
32nfcri 2895 . . . . 5 𝑥 𝑤𝐴
4 nfs1v 2154 . . . . 5 𝑥[𝑤 / 𝑥]𝑧 = 𝐵
53, 4nfan 1903 . . . 4 𝑥(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
6 eleq1w 2822 . . . . 5 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
7 sbequ12 2245 . . . . 5 (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵))
86, 7anbi12d 631 . . . 4 (𝑥 = 𝑤 → ((𝑥𝐴𝑧 = 𝐵) ↔ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)))
91, 5, 8cbvopab1 5150 . . 3 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)}
10 cbvmptf.2 . . . . . 6 𝑦𝐴
1110nfcri 2895 . . . . 5 𝑦 𝑤𝐴
12 cbvmptf.3 . . . . . . 7 𝑦𝐵
1312nfeq2 2925 . . . . . 6 𝑦 𝑧 = 𝐵
1413nfsbv 2325 . . . . 5 𝑦[𝑤 / 𝑥]𝑧 = 𝐵
1511, 14nfan 1903 . . . 4 𝑦(𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)
16 nfv 1918 . . . 4 𝑤(𝑦𝐴𝑧 = 𝐶)
17 eleq1w 2822 . . . . 5 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
18 sbequ 2087 . . . . . 6 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵))
19 cbvmptf.4 . . . . . . . 8 𝑥𝐶
2019nfeq2 2925 . . . . . . 7 𝑥 𝑧 = 𝐶
21 cbvmptf.5 . . . . . . . 8 (𝑥 = 𝑦𝐵 = 𝐶)
2221eqeq2d 2750 . . . . . . 7 (𝑥 = 𝑦 → (𝑧 = 𝐵𝑧 = 𝐶))
2320, 22sbiev 2310 . . . . . 6 ([𝑦 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶)
2418, 23bitrdi 287 . . . . 5 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵𝑧 = 𝐶))
2517, 24anbi12d 631 . . . 4 (𝑤 = 𝑦 → ((𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦𝐴𝑧 = 𝐶)))
2615, 16, 25cbvopab1 5150 . . 3 {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
279, 26eqtri 2767 . 2 {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
28 df-mpt 5159 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
29 df-mpt 5159 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧 = 𝐶)}
3027, 28, 293eqtr4i 2777 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  [wsb 2068  wcel 2107  wnfc 2888  {copab 5137  cmpt 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-opab 5138  df-mpt 5159
This theorem is referenced by:  cbvmpt  5186  resmptf  5950  fvmpt2f  6885  offval2f  7557  suppss2f  30983  fmptdF  31002  acunirnmpt2f  31007  funcnv4mpt  31015  cbvesum  32019  esumpfinvalf  32053  binomcxplemdvbinom  41978  binomcxplemdvsum  41980  binomcxplemnotnn0  41981  supxrleubrnmptf  42998  fnlimfv  43211  fnlimfvre2  43225  fnlimf  43226  limsupequzmptf  43279  sge0iunmptlemre  43960  smflim  44322  smflim2  44350  smfsup  44358  smfinf  44362  smflimsuplem2  44365  smflimsuplem5  44368  smflimsup  44372  smfliminf  44375
  Copyright terms: Public domain W3C validator