| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmptf | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2376. See cbvmptfg 5222 for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvmptf.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvmptf.3 | ⊢ Ⅎ𝑦𝐵 |
| cbvmptf.4 | ⊢ Ⅎ𝑥𝐶 |
| cbvmptf.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptf | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
| 2 | cbvmptf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2890 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 |
| 4 | nfs1v 2156 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
| 5 | 3, 4 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 6 | eleq1w 2817 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 7 | sbequ12 2251 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
| 8 | 6, 7 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
| 9 | 1, 5, 8 | cbvopab1 5193 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
| 10 | cbvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 11 | 10 | nfcri 2890 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 |
| 12 | cbvmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 13 | 12 | nfeq2 2916 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
| 14 | 13 | nfsbv 2330 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
| 15 | 11, 14 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
| 16 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
| 17 | eleq1w 2817 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | sbequ 2083 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
| 19 | cbvmptf.4 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
| 20 | 19 | nfeq2 2916 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
| 21 | cbvmptf.5 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 22 | 21 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 23 | 20, 22 | sbiev 2314 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
| 24 | 18, 23 | bitrdi 287 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
| 25 | 17, 24 | anbi12d 632 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
| 26 | 15, 16, 25 | cbvopab1 5193 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 27 | 9, 26 | eqtri 2758 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
| 28 | df-mpt 5202 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 29 | df-mpt 5202 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
| 30 | 27, 28, 29 | 3eqtr4i 2768 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 [wsb 2064 ∈ wcel 2108 Ⅎwnfc 2883 {copab 5181 ↦ cmpt 5201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-mpt 5202 |
| This theorem is referenced by: cbvmpt 5223 resmptf 6026 fvmpt2f 6987 offval2f 7686 suppss2f 32616 fmptdF 32634 acunirnmpt2f 32639 funcnv4mpt 32647 cbvesum 34073 esumpfinvalf 34107 binomcxplemdvbinom 44377 binomcxplemdvsum 44379 binomcxplemnotnn0 44380 fmptff 45293 supxrleubrnmptf 45478 fnlimfv 45692 fnlimfvre2 45706 fnlimf 45707 limsupequzmptf 45760 sge0iunmptlemre 46444 smflim 46806 smflim2 46835 smfsup 46843 smfinf 46847 smflimsuplem2 46850 smflimsuplem5 46853 smflimsup 46857 smfliminf 46860 |
| Copyright terms: Public domain | W3C validator |