Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfesum2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.) |
Ref | Expression |
---|---|
nfesum2.1 | ⊢ Ⅎ𝑥𝐴 |
nfesum2.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfesum2 | ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 32235 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥(ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥 tsums | |
4 | nfesum2.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
5 | nfesum2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | nfmpt 5196 | . . . 4 ⊢ Ⅎ𝑥(𝑘 ∈ 𝐴 ↦ 𝐵) |
7 | 2, 3, 6 | nfov 7359 | . . 3 ⊢ Ⅎ𝑥((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
8 | 7 | nfuni 4858 | . 2 ⊢ Ⅎ𝑥∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
9 | 1, 8 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 ∪ cuni 4851 ↦ cmpt 5172 (class class class)co 7329 0cc0 10964 +∞cpnf 11099 [,]cicc 13175 ↾s cress 17030 ℝ*𝑠cxrs 17300 tsums ctsu 23375 Σ*cesum 32234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-iota 6425 df-fv 6481 df-ov 7332 df-esum 32235 |
This theorem is referenced by: esum2dlem 32299 |
Copyright terms: Public domain | W3C validator |