Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfesum2 Structured version   Visualization version   GIF version

Theorem nfesum2 33569
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
nfesum2.1 𝑥𝐴
nfesum2.2 𝑥𝐵
Assertion
Ref Expression
nfesum2 𝑥Σ*𝑘𝐴𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfesum2
StepHypRef Expression
1 df-esum 33556 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 nfcv 2897 . . . 4 𝑥(ℝ*𝑠s (0[,]+∞))
3 nfcv 2897 . . . 4 𝑥 tsums
4 nfesum2.1 . . . . 5 𝑥𝐴
5 nfesum2.2 . . . . 5 𝑥𝐵
64, 5nfmpt 5248 . . . 4 𝑥(𝑘𝐴𝐵)
72, 3, 6nfov 7434 . . 3 𝑥((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
87nfuni 4909 . 2 𝑥 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
91, 8nfcxfr 2895 1 𝑥Σ*𝑘𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877   cuni 4902  cmpt 5224  (class class class)co 7404  0cc0 11109  +∞cpnf 11246  [,]cicc 13330  s cress 17180  *𝑠cxrs 17453   tsums ctsu 23981  Σ*cesum 33555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-iota 6488  df-fv 6544  df-ov 7407  df-esum 33556
This theorem is referenced by:  esum2dlem  33620
  Copyright terms: Public domain W3C validator