| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfesum2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.) |
| Ref | Expression |
|---|---|
| nfesum2.1 | ⊢ Ⅎ𝑥𝐴 |
| nfesum2.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfesum2 | ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34001 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥(ℝ*𝑠 ↾s (0[,]+∞)) | |
| 3 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥 tsums | |
| 4 | nfesum2.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 5 | nfesum2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | nfmpt 5190 | . . . 4 ⊢ Ⅎ𝑥(𝑘 ∈ 𝐴 ↦ 𝐵) |
| 7 | 2, 3, 6 | nfov 7379 | . . 3 ⊢ Ⅎ𝑥((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 8 | 7 | nfuni 4865 | . 2 ⊢ Ⅎ𝑥∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 9 | 1, 8 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∪ cuni 4858 ↦ cmpt 5173 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 [,]cicc 13251 ↾s cress 17141 ℝ*𝑠cxrs 17404 tsums ctsu 24011 Σ*cesum 34000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-iota 6438 df-fv 6490 df-ov 7352 df-esum 34001 |
| This theorem is referenced by: esum2dlem 34065 |
| Copyright terms: Public domain | W3C validator |