Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfesum2 Structured version   Visualization version   GIF version

Theorem nfesum2 34054
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
nfesum2.1 𝑥𝐴
nfesum2.2 𝑥𝐵
Assertion
Ref Expression
nfesum2 𝑥Σ*𝑘𝐴𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfesum2
StepHypRef Expression
1 df-esum 34041 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 nfcv 2894 . . . 4 𝑥(ℝ*𝑠s (0[,]+∞))
3 nfcv 2894 . . . 4 𝑥 tsums
4 nfesum2.1 . . . . 5 𝑥𝐴
5 nfesum2.2 . . . . 5 𝑥𝐵
64, 5nfmpt 5187 . . . 4 𝑥(𝑘𝐴𝐵)
72, 3, 6nfov 7376 . . 3 𝑥((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
87nfuni 4863 . 2 𝑥 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
91, 8nfcxfr 2892 1 𝑥Σ*𝑘𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879   cuni 4856  cmpt 5170  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  [,]cicc 13248  s cress 17141  *𝑠cxrs 17404   tsums ctsu 24041  Σ*cesum 34040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-iota 6437  df-fv 6489  df-ov 7349  df-esum 34041
This theorem is referenced by:  esum2dlem  34105
  Copyright terms: Public domain W3C validator