Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfesum2 Structured version   Visualization version   GIF version

Theorem nfesum2 32248
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
nfesum2.1 𝑥𝐴
nfesum2.2 𝑥𝐵
Assertion
Ref Expression
nfesum2 𝑥Σ*𝑘𝐴𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfesum2
StepHypRef Expression
1 df-esum 32235 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 nfcv 2904 . . . 4 𝑥(ℝ*𝑠s (0[,]+∞))
3 nfcv 2904 . . . 4 𝑥 tsums
4 nfesum2.1 . . . . 5 𝑥𝐴
5 nfesum2.2 . . . . 5 𝑥𝐵
64, 5nfmpt 5196 . . . 4 𝑥(𝑘𝐴𝐵)
72, 3, 6nfov 7359 . . 3 𝑥((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
87nfuni 4858 . 2 𝑥 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
91, 8nfcxfr 2902 1 𝑥Σ*𝑘𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2884   cuni 4851  cmpt 5172  (class class class)co 7329  0cc0 10964  +∞cpnf 11099  [,]cicc 13175  s cress 17030  *𝑠cxrs 17300   tsums ctsu 23375  Σ*cesum 32234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-iota 6425  df-fv 6481  df-ov 7332  df-esum 32235
This theorem is referenced by:  esum2dlem  32299
  Copyright terms: Public domain W3C validator