![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfesum2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020.) |
Ref | Expression |
---|---|
nfesum2.1 | ⊢ Ⅎ𝑥𝐴 |
nfesum2.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfesum2 | ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33026 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥(ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥 tsums | |
4 | nfesum2.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
5 | nfesum2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | nfmpt 5256 | . . . 4 ⊢ Ⅎ𝑥(𝑘 ∈ 𝐴 ↦ 𝐵) |
7 | 2, 3, 6 | nfov 7439 | . . 3 ⊢ Ⅎ𝑥((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
8 | 7 | nfuni 4916 | . 2 ⊢ Ⅎ𝑥∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
9 | 1, 8 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥Σ*𝑘 ∈ 𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 ∪ cuni 4909 ↦ cmpt 5232 (class class class)co 7409 0cc0 11110 +∞cpnf 11245 [,]cicc 13327 ↾s cress 17173 ℝ*𝑠cxrs 17446 tsums ctsu 23630 Σ*cesum 33025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-iota 6496 df-fv 6552 df-ov 7412 df-esum 33026 |
This theorem is referenced by: esum2dlem 33090 |
Copyright terms: Public domain | W3C validator |