| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsumvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvsumvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvsumvw2.2 | ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvsumvw2 | ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsumvw2.2 | . . 3 ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) | |
| 2 | 1 | cbvsumv 15715 | . 2 ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐴 𝐷 |
| 3 | cbvsumvw2.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | sumeq1i 15716 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐷 = Σ𝑘 ∈ 𝐵 𝐷 |
| 5 | 2, 4 | eqtri 2757 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 Σcsu 15705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-iota 6494 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seq 14025 df-sum 15706 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |