Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsumvw2 Structured version   Visualization version   GIF version

Theorem cbvsumvw2 36362
Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvsumvw2.1 𝐴 = 𝐵
cbvsumvw2.2 (𝑗 = 𝑘𝐶 = 𝐷)
Assertion
Ref Expression
cbvsumvw2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Distinct variable groups:   𝑗,𝑘   𝐷,𝑗   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvsumvw2
StepHypRef Expression
1 cbvsumvw2.2 . . 3 (𝑗 = 𝑘𝐶 = 𝐷)
21cbvsumv 15610 . 2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐴 𝐷
3 cbvsumvw2.1 . . 3 𝐴 = 𝐵
43sumeq1i 15611 . 2 Σ𝑘𝐴 𝐷 = Σ𝑘𝐵 𝐷
52, 4eqtri 2756 1 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-iota 6445  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-seq 13916  df-sum 15601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator