Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsumvw2 Structured version   Visualization version   GIF version

Theorem cbvsumvw2 36229
Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvsumvw2.1 𝐴 = 𝐵
cbvsumvw2.2 (𝑗 = 𝑘𝐶 = 𝐷)
Assertion
Ref Expression
cbvsumvw2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Distinct variable groups:   𝑗,𝑘   𝐷,𝑗   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvsumvw2
StepHypRef Expression
1 cbvsumvw2.2 . . 3 (𝑗 = 𝑘𝐶 = 𝐷)
21cbvsumv 15668 . 2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐴 𝐷
3 cbvsumvw2.1 . . 3 𝐴 = 𝐵
43sumeq1i 15669 . 2 Σ𝑘𝐴 𝐷 = Σ𝑘𝐵 𝐷
52, 4eqtri 2753 1 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Σcsu 15658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-xp 5646  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-seq 13973  df-sum 15659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator