| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsumvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvsumvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvsumvw2.2 | ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvsumvw2 | ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsumvw2.2 | . . 3 ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) | |
| 2 | 1 | cbvsumv 15610 | . 2 ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐴 𝐷 |
| 3 | cbvsumvw2.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | sumeq1i 15611 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐷 = Σ𝑘 ∈ 𝐵 𝐷 |
| 5 | 2, 4 | eqtri 2756 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Σcsu 15600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-seq 13916 df-sum 15601 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |