Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsumvw2 Structured version   Visualization version   GIF version

Theorem cbvsumvw2 36220
Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvsumvw2.1 𝐴 = 𝐵
cbvsumvw2.2 (𝑗 = 𝑘𝐶 = 𝐷)
Assertion
Ref Expression
cbvsumvw2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Distinct variable groups:   𝑗,𝑘   𝐷,𝑗   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvsumvw2
StepHypRef Expression
1 cbvsumvw2.2 . . 3 (𝑗 = 𝑘𝐶 = 𝐷)
21cbvsumv 15603 . 2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐴 𝐷
3 cbvsumvw2.1 . . 3 𝐴 = 𝐵
43sumeq1i 15604 . 2 Σ𝑘𝐴 𝐷 = Σ𝑘𝐵 𝐷
52, 4eqtri 2752 1 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seq 13909  df-sum 15594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator