Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsumvw2 Structured version   Visualization version   GIF version

Theorem cbvsumvw2 36222
Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvsumvw2.1 𝐴 = 𝐵
cbvsumvw2.2 (𝑗 = 𝑘𝐶 = 𝐷)
Assertion
Ref Expression
cbvsumvw2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Distinct variable groups:   𝑗,𝑘   𝐷,𝑗   𝐶,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗)   𝐷(𝑘)

Proof of Theorem cbvsumvw2
StepHypRef Expression
1 cbvsumvw2.2 . . 3 (𝑗 = 𝑘𝐶 = 𝐷)
21cbvsumv 15715 . 2 Σ𝑗𝐴 𝐶 = Σ𝑘𝐴 𝐷
3 cbvsumvw2.1 . . 3 𝐴 = 𝐵
43sumeq1i 15716 . 2 Σ𝑘𝐴 𝐷 = Σ𝑘𝐵 𝐷
52, 4eqtri 2757 1 Σ𝑗𝐴 𝐶 = Σ𝑘𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-iota 6494  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-seq 14025  df-sum 15706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator