| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsumvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvsumvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvsumvw2.2 | ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvsumvw2 | ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsumvw2.2 | . . 3 ⊢ (𝑗 = 𝑘 → 𝐶 = 𝐷) | |
| 2 | 1 | cbvsumv 15638 | . 2 ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐴 𝐷 |
| 3 | cbvsumvw2.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | sumeq1i 15639 | . 2 ⊢ Σ𝑘 ∈ 𝐴 𝐷 = Σ𝑘 ∈ 𝐵 𝐷 |
| 5 | 2, 4 | eqtri 2752 | 1 ⊢ Σ𝑗 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seq 13943 df-sum 15629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |