Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 1, 3, 5 | nfriotadw 7220 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 Ⅎwnfc 2886 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: csbriota 7228 nfoi 9203 lble 11857 nosupbnd1 33844 noinfbnd1 33859 riotasvd 36897 riotasv2d 36898 riotasv2s 36899 cdleme26ee 38301 cdleme31sn1 38322 cdlemefs32sn1aw 38355 cdleme43fsv1snlem 38361 cdleme41sn3a 38374 cdleme32d 38385 cdleme32f 38387 cdleme40m 38408 cdleme40n 38409 cdlemk36 38854 cdlemk38 38856 cdlemkid 38877 cdlemk19x 38884 cdlemk11t 38887 |
Copyright terms: Public domain | W3C validator |