![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 1, 3, 5 | nfriotadw 7368 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
7 | 6 | mptru 1549 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1543 Ⅎwnf 1786 Ⅎwnfc 2884 ℩crio 7359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-v 3477 df-in 3954 df-ss 3964 df-sn 4628 df-uni 4908 df-iota 6492 df-riota 7360 |
This theorem is referenced by: csbriota 7376 nfoi 9505 lble 12162 nosupbnd1 27197 noinfbnd1 27212 riotasvd 37764 riotasv2d 37765 riotasv2s 37766 cdleme26ee 39169 cdleme31sn1 39190 cdlemefs32sn1aw 39223 cdleme43fsv1snlem 39229 cdleme41sn3a 39242 cdleme32d 39253 cdleme32f 39255 cdleme40m 39276 cdleme40n 39277 cdlemk36 39722 cdlemk38 39724 cdlemkid 39745 cdlemk19x 39752 cdlemk11t 39755 |
Copyright terms: Public domain | W3C validator |