MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota Structured version   Visualization version   GIF version

Theorem nfriota 7417
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1802 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 11 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadw 7412 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1544 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1781  wnfc 2893  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-sn 4649  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  csbriota  7420  nfoi  9583  lble  12247  nosupbnd1  27777  noinfbnd1  27792  riotasvd  38912  riotasv2d  38913  riotasv2s  38914  cdleme26ee  40317  cdleme31sn1  40338  cdlemefs32sn1aw  40371  cdleme43fsv1snlem  40377  cdleme41sn3a  40390  cdleme32d  40401  cdleme32f  40403  cdleme40m  40424  cdleme40n  40425  cdlemk36  40870  cdlemk38  40872  cdlemkid  40893  cdlemk19x  40900  cdlemk11t  40903
  Copyright terms: Public domain W3C validator