MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota Structured version   Visualization version   GIF version

Theorem nfriota 7359
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1804 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 11 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadw 7355 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1547 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnf 1783  wnfc 2877  crio 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3934  df-sn 4593  df-uni 4875  df-iota 6467  df-riota 7347
This theorem is referenced by:  csbriota  7362  nfoi  9474  lble  12142  nosupbnd1  27633  noinfbnd1  27648  riotasvd  38956  riotasv2d  38957  riotasv2s  38958  cdleme26ee  40361  cdleme31sn1  40382  cdlemefs32sn1aw  40415  cdleme43fsv1snlem  40421  cdleme41sn3a  40434  cdleme32d  40445  cdleme32f  40447  cdleme40m  40468  cdleme40n  40469  cdlemk36  40914  cdlemk38  40916  cdlemkid  40937  cdlemk19x  40944  cdlemk11t  40947
  Copyright terms: Public domain W3C validator