| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
| nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | 1, 3, 5 | nfriotadw 7334 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-sn 4586 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: csbriota 7341 nfoi 9443 lble 12111 nosupbnd1 27659 noinfbnd1 27674 riotasvd 38942 riotasv2d 38943 riotasv2s 38944 cdleme26ee 40347 cdleme31sn1 40368 cdlemefs32sn1aw 40401 cdleme43fsv1snlem 40407 cdleme41sn3a 40420 cdleme32d 40431 cdleme32f 40433 cdleme40m 40454 cdleme40n 40455 cdlemk36 40900 cdlemk38 40902 cdlemkid 40923 cdlemk19x 40930 cdlemk11t 40933 |
| Copyright terms: Public domain | W3C validator |