MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota Structured version   Visualization version   GIF version

Theorem nfriota 7374
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1804 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 11 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadw 7370 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1547 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnf 1783  wnfc 2883  crio 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-v 3461  df-ss 3943  df-sn 4602  df-uni 4884  df-iota 6484  df-riota 7362
This theorem is referenced by:  csbriota  7377  nfoi  9528  lble  12194  nosupbnd1  27678  noinfbnd1  27693  riotasvd  38974  riotasv2d  38975  riotasv2s  38976  cdleme26ee  40379  cdleme31sn1  40400  cdlemefs32sn1aw  40433  cdleme43fsv1snlem  40439  cdleme41sn3a  40452  cdleme32d  40463  cdleme32f  40465  cdleme40m  40486  cdleme40n  40487  cdlemk36  40932  cdlemk38  40934  cdlemkid  40955  cdlemk19x  40962  cdlemk11t  40965
  Copyright terms: Public domain W3C validator