| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
| nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | 1, 3, 5 | nfriotadw 7355 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2877 ℩crio 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-sn 4593 df-uni 4875 df-iota 6467 df-riota 7347 |
| This theorem is referenced by: csbriota 7362 nfoi 9474 lble 12142 nosupbnd1 27633 noinfbnd1 27648 riotasvd 38956 riotasv2d 38957 riotasv2s 38958 cdleme26ee 40361 cdleme31sn1 40382 cdlemefs32sn1aw 40415 cdleme43fsv1snlem 40421 cdleme41sn3a 40434 cdleme32d 40445 cdleme32f 40447 cdleme40m 40468 cdleme40n 40469 cdlemk36 40914 cdlemk38 40916 cdlemkid 40937 cdlemk19x 40944 cdlemk11t 40947 |
| Copyright terms: Public domain | W3C validator |