| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
| nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | 1, 3, 5 | nfriotadw 7370 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2883 ℩crio 7361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-sn 4602 df-uni 4884 df-iota 6484 df-riota 7362 |
| This theorem is referenced by: csbriota 7377 nfoi 9528 lble 12194 nosupbnd1 27678 noinfbnd1 27693 riotasvd 38974 riotasv2d 38975 riotasv2s 38976 cdleme26ee 40379 cdleme31sn1 40400 cdlemefs32sn1aw 40433 cdleme43fsv1snlem 40439 cdleme41sn3a 40452 cdleme32d 40463 cdleme32f 40465 cdleme40m 40486 cdleme40n 40487 cdlemk36 40932 cdlemk38 40934 cdlemkid 40955 cdlemk19x 40962 cdlemk11t 40965 |
| Copyright terms: Public domain | W3C validator |