MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota Structured version   Visualization version   GIF version

Theorem nfriota 7321
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1805 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 11 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadw 7317 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1548 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1784  wnfc 2879  crio 7308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-sn 4576  df-uni 4859  df-iota 6443  df-riota 7309
This theorem is referenced by:  csbriota  7324  nfoi  9406  lble  12080  nosupbnd1  27659  noinfbnd1  27674  riotasvd  39061  riotasv2d  39062  riotasv2s  39063  cdleme26ee  40465  cdleme31sn1  40486  cdlemefs32sn1aw  40519  cdleme43fsv1snlem  40525  cdleme41sn3a  40538  cdleme32d  40549  cdleme32f  40551  cdleme40m  40572  cdleme40n  40573  cdlemk36  41018  cdlemk38  41020  cdlemkid  41041  cdlemk19x  41048  cdlemk11t  41051
  Copyright terms: Public domain W3C validator