MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfriota Structured version   Visualization version   GIF version

Theorem nfriota 7225
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1808 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 11 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadw 7220 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1546 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1787  wnfc 2886  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376  df-riota 7212
This theorem is referenced by:  csbriota  7228  nfoi  9203  lble  11857  nosupbnd1  33844  noinfbnd1  33859  riotasvd  36897  riotasv2d  36898  riotasv2s  36899  cdleme26ee  38301  cdleme31sn1  38322  cdlemefs32sn1aw  38355  cdleme43fsv1snlem  38361  cdleme41sn3a  38374  cdleme32d  38385  cdleme32f  38387  cdleme40m  38408  cdleme40n  38409  cdlemk36  38854  cdlemk38  38856  cdlemkid  38877  cdlemk19x  38884  cdlemk11t  38887
  Copyright terms: Public domain W3C validator