| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
| nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | 1, 3, 5 | nfriotadw 7334 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-sn 4586 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: csbriota 7341 nfoi 9443 lble 12113 nosupbnd1 27660 noinfbnd1 27675 riotasvd 38943 riotasv2d 38944 riotasv2s 38945 cdleme26ee 40348 cdleme31sn1 40369 cdlemefs32sn1aw 40402 cdleme43fsv1snlem 40408 cdleme41sn3a 40421 cdleme32d 40432 cdleme32f 40434 cdleme40m 40455 cdleme40n 40456 cdlemk36 40901 cdlemk38 40903 cdlemkid 40924 cdlemk19x 40931 cdlemk11t 40934 |
| Copyright terms: Public domain | W3C validator |