![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfriota | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1802 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 1, 3, 5 | nfriotadw 7412 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
7 | 6 | mptru 1544 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1781 Ⅎwnfc 2893 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-sn 4649 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: csbriota 7420 nfoi 9583 lble 12247 nosupbnd1 27777 noinfbnd1 27792 riotasvd 38912 riotasv2d 38913 riotasv2s 38914 cdleme26ee 40317 cdleme31sn1 40338 cdlemefs32sn1aw 40371 cdleme43fsv1snlem 40377 cdleme41sn3a 40390 cdleme32d 40401 cdleme32f 40403 cdleme40m 40424 cdleme40n 40425 cdlemk36 40870 cdlemk38 40872 cdlemkid 40893 cdlemk19x 40900 cdlemk11t 40903 |
Copyright terms: Public domain | W3C validator |